PAT.1030 Travel Plan - Dijikstra

本文介绍了如何使用Dijkstra算法求解旅行计划中所有可能的最短路线,并通过深度优先搜索找到成本最低的路径。通过实例演示了如何在城市间计算最短距离和最少花费,适合理解图算法在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PAT.1030 Travel Plan - Dijikstra

题目链接
思路和PAT.1018基本是一样的,先Dijikstra求所有可能的最短路,然后dfs求所有最短路里代价最小的一条。

题解

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;

struct city{
    int num;
    int dis;
    bool operator < (const city &a) const{
        if(dis > a.dis) return true;
        else return false;
    }
};

int cityCnt,roadCnt,start,s,d,l,c,dest,dis[505][505],cost[505][505],vis[505],minDis[505],minCost = 0x3f3f3f3f;
vector<int> neighbors[505];
vector<int> preCity[505];
vector<int> res;
priority_queue<city> citys;

void dfs(int city,int currentCost,vector<int> path){
    if(city == start){
        if(currentCost < minCost){
            minCost = currentCost;
            res = path;
        }
        return;
    }
    for(int pc : preCity[city]){
        path.push_back(pc);
        dfs(pc,currentCost + cost[pc][city],path);
        path.pop_back();
    }
}

int main(){
    cin>>cityCnt>>roadCnt>>start>>dest;
    memset(minDis,0x3f3f3f3f,sizeof(minDis));
    for(int i = 0 ; i < roadCnt ; ++i){
        cin>>s>>d>>l>>c;
        dis[s][d] = dis[d][s] = l;
        cost[s][d] = cost[d][s] = c;
        neighbors[s].push_back(d);
        neighbors[d].push_back(s);
    }
    citys.push((city){start,0});
    while(!citys.empty()){
        city currentCity = citys.top();
        citys.pop();
        if(vis[currentCity.num] == 1) continue;
        vis[currentCity.num] = 1;
        for(int nextCity : neighbors[currentCity.num]){
            if(dis[currentCity.num][nextCity] + currentCity.dis < minDis[nextCity]){
                minDis[nextCity] = dis[currentCity.num][nextCity] + currentCity.dis;
                preCity[nextCity].clear();
                preCity[nextCity].push_back(currentCity.num);
                citys.push((city){nextCity,minDis[nextCity]});
            }else if(dis[currentCity.num][nextCity] + currentCity.dis == minDis[nextCity]){
                preCity[nextCity].push_back(currentCity.num);
            }
        }
    }
    //find the path with least cost;
    dfs(dest,0,{dest});
    for(auto itr = res.rbegin() ; itr != res.rend() ; ++itr){
        cout<<*itr<<' ';
    }
    cout<<minDis[dest]<<' '<<minCost;
}
void QueryWindow::dijkstra_heap(Lgraph Graph,int s,int stime,pre *prenum,int flag) { /*堆优化Dijikstra*/ //int day = 0; int top = 0; heap node; node.dis = stime;//将起始点即编号为s的点的到达时间设为stime node.ver = s;//起始点编号为s //初始化状态数组和最小距离数组和(前驱节点和航班/列次)数组 for(int i = 0; i < Graph->Nv; i ++ ) { st[i] = false; dist[i] = INF; prenum[i].name = QString(); prenum[i].prepoint = -1; if(flag == 1 && !Graph->f_G[i].canFly) st[i] = true; } dist[s] = stime;//初始化起点的时间 push(h,top,node);//将起点入堆 while(top){ auto x = pop(h,top);//取出堆顶元素 int ver = x.ver; if(st[ver]) continue;//如果已经被选中就不再选了 st[ver] = true;//不然就选它 AdjVNode i = new adjVNode; int distance = 0; if(flag == 1){//飞机还是火车 //添加等待时间 distance = x.dis + wait_time; if(ver == s) distance -= wait_time; i = Graph->f_G[ver].First;//确定初边 }else{ distance = x.dis + wait_time2; if(ver == s) distance -= wait_time2; i = Graph->t_G[ver].First; } for( ; i ; i = i->next) { int j = i->adjv; int current_time = distance % 24;//现在的时间对应几点 int wait = (i->weight.go - current_time + 24) % 24;//如果选择这个航班/火车,需要等待的时间 if(dist[j] > distance + wait + i->weight.time) { dist[j] = distance + wait + i->weight.time; node.dis = dist[j]; node.ver = j; prenum[j].prepoint = ver; prenum[j].name = i->weight.name; push(h,top,node);//会重复入堆,还可以优化 } } } }转化成伪代码
06-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值