There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals to a+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
Input
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
Output
For each test case, output the minimum number of steps. If it’s impossible to reach point B, output “-1” instead.
Sample Input
2
0 1 1 2
0 1 2 4
Sample Output
1
-1
求
满足ax+by=|B-A|
|x|+|y|最小值
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll inf = 0x3f3f3f3f;
void exgcd(ll a,ll b,ll&g,ll&x,ll&y)//g:gcd(a,b)
{
if(b==0)
{
x=1;y=0;g=a;return;
}
exgcd(b,a%b,g,y,x);
y-=(a/b)*x;
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll A,B,C,a,b;
cin>>A>>B>>a>>b;
ll x,y;
ll r;
exgcd(a,b,r,x,y);
C=B-A;
if(C%r)
cout<<"-1"<<endl;
else
{
x*=(C/r);
y*=(C/r);
a/=r;
b/=r;
ll ans=inf*inf,tmp;
ll mid=(y-x)/(a + b);//x|+|y|最小值在x=x+bt与y=y-at两条直线交点附近;
for(ll T=mid-1;T<=(mid+1);T++)
{
if((x+b*T)*(y-a*T)>=0)//同方向 ,可合并
{
tmp=max(abs(x+b*T),abs(y-a*T));
}
else//
tmp=abs(x-y+(a+b)*T);
ans=min(ans,tmp);
}
cout<<ans<<'\n';
}
}
return 0;
}