1. 序列化概述
2. 自定义Bean对象实现序列化接口(Writable)
在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口(implements Writable)
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
public FlowBean() {
super();
}
(3)重写序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
(4)重写反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。
@Override
public int compareTo(FlowBean o) {
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}
3. 序列化案例实操(MapReduce程序)
(1)编写流量统计的Bean对象
package flowsum;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class FlowBean implements Writable {
private long upFlow;//上行流量
private long downFlow;//下行流量
private long sumFlow;//总流量
//空参构造,为了后续反射用
public FlowBean() {
super();
}
public FlowBean(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
sumFlow = upFlow + downFlow;
}
//序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
//反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
//必须和序列化一致
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
public void set(long upFlow1, long downFlow1) {
upFlow = upFlow1;
downFlow = downFlow1;
sumFlow = upFlow1 + downFlow1;
}
}
(2)编写Mapper类
package flowsum;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean> {
Text k = new Text();
FlowBean v = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行
String line = value.toString();
//2.切割\t
String[] fields = line.split("\t");
//3.封装对象
k.set(fields[1]);//封装手机号
long upFlow = Long.parseLong(fields[fields.length - 3]);
long downFlow = Long.parseLong(fields[fields.length - 2]);
v.setUpFlow(upFlow);
v.setDownFlow(downFlow);
// v.set(upFlow,downFlow);
//4.写出
context.write(k,v);
}
}
(3)编写Reducer类
package flowsum;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowCountReduce extends Reducer<Text,FlowBean,Text,FlowBean> {
FlowBean v = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
//1.累加求和
long sum_upFlow = 0;
long sum_downFlow = 0;
for (FlowBean value : values){
sum_upFlow += value.getUpFlow();
sum_downFlow += value.getDownFlow();
}
v.set(sum_upFlow,sum_downFlow);
//2.写出
context.write(key,v);
}
}
(4)编写Driver驱动类
package flowsum;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
args = new String[]{"f:/MR_IO/input","f:/MR_IO/output_Flo"};
//1.获取Job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2设置jar路径
job.setJarByClass(FlowCountDriver.class);
//3.关联Mapper和Reducer
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReduce.class);
//4.设置Mapper输出的key和value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5.设置最终输出的key和value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//6.设置输入输出路径
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
//7.提交Job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}