python根据函数f(x)绘图(二维)
1.加载相关库
2.根据有效范围生成点列x,并根据f(x)生成对应的点列y
3.绘制图像
- f(x)=x^4
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,1,100)#在0,1内等间隔生成100个点列
y=[xi*xi*xi*xi for xi in x]
plt.plot(x,y,label='f(x)=x^4',color=(0,1,1))
plt.legend(title='function',loc='upper right')
2.f(x)=(x-0.4)^4
import matplotlib.pyplot as plt
import numpy as np
import math
x=np.linspace(0,1,100)#在0,1内等间隔生成100个点列
y=[math.pow(xi-0.4,4) for xi in x]
%matplotlib inline
sns.set_style('white')#默认'darkgrid':网格帮助图作为定量信息的查找表
plt.rcParams['figure.figsize'] = (12, 8)#设置figure_size尺寸
plt.plot(x,y,label='f(x)=(x-0.4)^4',color=(0,1,1))
plt.legend(title='function',loc='upper right')
3.f(x)=
(
x
−
0.4
)
4
∫
0
1
(
x
−
0.4
)
4
d
x
\frac{(x-0.4)^4}{\int_{0}^{1}(x-0.4)^4dx}
∫01(x−0.4)4dx(x−0.4)4
import matplotlib.pyplot as plt
import numpy as np
import math
import random
x=np.linspace(0,1,100)
power=4
t=0.4
sum_=(math.pow(0.6,5)-math.pow(-0.4,5))/5
y=[math.pow(xi-t,power)/sum_ for xi in x]
%matplotlib inline
sns.set_style('white')#默认'darkgrid':网格帮助图作为定量信息的查找表
plt.rcParams['figure.figsize'] = (12, 8)#设置figure_size尺寸
plt.plot(x, y,label='f(x)=(x-0.4)^4/0.0176',color='pink')
plt.legend(title="function classes",loc='upper right')
plt.show()
参考文献
1.Markdown KaTex 积分符号
2.Markdown公式笔记(一):字母上下标和分数表示
附加-一多种曲线绘制在一张图上
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,1,100)
f1=[xi*xi for xi in x]
f2=[xi*xi*xi*xi for xi in x]
f3=[math.pow(xi-t,power) for xi in x]
sum_=(math.pow(0.6,5)-math.pow(-0.4,5))/5
f4=[math.pow(xi-t,power)/sum_ for xi in x]
#plt.plot(x,f1,label='f(x)=x^2',color=(0,1,1))
plt.plot(x,f2,label='f(x)=x^4',color=(0,0,1))
plt.plot(x,f3,label='f(x)=(x-0.4)^4',color=(0,0,1))
#plt.plot(x,f4,label='f(x)=(x-0.4)^4/0.0176',color=(0,0.5,0.5))
plt.legend(title='function',loc='upper right')
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,1,100)
f1=[xi*xi for xi in x]
f2=[xi*xi*xi*xi for xi in x]
f3=[math.pow(xi-t,power) for xi in x]
sum_=(math.pow(0.6,5)-math.pow(-0.4,5))/5
f4=[math.pow(xi-t,power)/sum_ for xi in x]
#plt.plot(x,f1,label='f(x)=x^2',color=(0,1,1))
#plt.plot(x,f2,label='f(x)=x^4',color=(0,0,1))
plt.plot(x,f3,label='f(x)=(x-0.4)^4',color=(0,1,0))
plt.plot(x,f4,label='f(x)=(x-0.4)^4/0.0176',color=(0,1,1))
plt.legend(title='function',loc='upper right')