目录
01 学习目标
(1)理解二分类与多分类的原理区别
(2)掌握简单多分类问题的神经网络实现方法
(3)理解多分类问题算法中的激活函数与损失函数原理
02 实现工具
(1)代码运行环境
Python语言,Jupyter notebook平台
(2)所需模块
numpy,matplotlib,tensorflow,lab_utils_multiclass_TF,logging
03 概念与原理
(1)二分类&多分类
二分类将输入数据划分为两个不同类别,目标变量为一维(0或1)。比如:判断一封电子邮件是否为垃圾邮件(是/否)、判断一个用户是否会点击某个广告或链接(会/不会)等。
多分类将输入数据划分为三个及以上不同类别,目标变量为一维或更高维。比如:图像识别、文本分类等。
二分类与多分类都是分类问题,本质上都是经过逻辑分析进行处理。相较二分类的“一对一(0&1)”逻辑,多分类多了一层逻辑,其逻辑处理有“一对一(0或1)”和“一对多(0&1/2/3/4…)”两种策略。如下图所示:
图1 “一对一”策略
图2 “一对多”策略
由图1和2可知,假设目标有n类,“一对一”策略需要n×(n-1)次分类,而“一对多”策略仅需要n次分类。
(2)神经网络中的激活函数 & 归一化指数函数(SoftMax函数)
激活函数负责将神经元的输入映射到输出端,位于隐藏层的神经元内。作用:引入非线性以处理现实复杂问题。
SoftMax函数负责处理输出层神经元的输出结果,位于模型编译过程中、损失函数内。作用:将输出层数值处理为 [0,1]范围内的概率分布,用于预测。
(3)SoftMax函数及其损失函数的数学原理
对于输出结果向量,SoftMax函数:
对于SoftMax处理后的数值,采用交叉熵损失函数:
成本函数:
然而,实际项目中可能遇到比较大的数值,SoftMax函数第1步会先进行指数计算(即e^x),这往往造成内存溢出无法计算。因此,可对SoftMax函数及其损失函数进行算法优化:
本质为取进行归一化预处理,具体推导过程如下:
优化后的SoftMax函数如下:
优化后的第k类的损失函数为:
式中,,k为目标值(类别),即y=k,总共有n类。
04 应用示例
(1)示例描述
采用sklearn库中的make_blobs函数随机生成4类共2000个数据点,然后基于这4类数据,采用人工神经网络对其进行分类并可视化。
(2)代码实现
第1步,导入所需模块:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib widget
from sklearn.datasets import make_blobs
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
np.set_printoptions(precision=2)
from lab_utils_multiclass_TF import *
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)
第2步,生成数据:
centers = [[-5, 2], [-2, -2], [1, 2], [5, -2]] # 4个类中心
X_train, y_train = make_blobs(n_samples=2000, centers=centers, cluster_std=1.0,random_state=30)
第3步,定义框架、编译模型、训练模型:
model = Sequential(
[
Dense(25, activation = 'relu'),
Dense(15, activation = 'relu'),
Dense(4, activation = 'linear') # < softmax activation here
]
)
model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(0.001),
)
model.fit(
X_train,y_train,
epochs=100
)
第4步,结果显示:
plt_cat_mc(X_train, y_train, model, 4)
运行以上代码,结果如下:
05 总结
(1)多分类的本质是二分类,基本原理是逻辑回归。
(2)采用Softmax需在损失函数中定义,并需输出层以激活函数linear配合。
(3)二分类输出层的神经元个数为1,多分类问题输出层神经元个数为类别个数,若类数未知则可通过试算确定。