CodeForces - 255C

本文探讨了一个算法问题,即从给定的整数序列中找出最长的子序列,该子序列遵循特定的几乎等差数列规则。通过使用动态规划的方法,我们能够有效地解决这个问题,找到满足条件的最大子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Discription
Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:

a1 = p, where p is some integer;
ai = ai - 1 + ( - 1)i + 1·q (i > 1), where q is some integer.
Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.

Sequence s1,  s2,  …,  sk is a subsequence of sequence b1,  b2,  …,  bn, if there is such increasing sequence of indexes i1, i2, …, ik (1  ≤  i1  <  i2  < …   <  ik  ≤  n), that bij  =  sj. In other words, sequence s can be obtained from b by crossing out some elements.

Input
The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integers b1, b2, …, bn (1 ≤ bi ≤ 106).

Output
Print a single integer — the length of the required longest subsequence.

Examples
Input

2
3 5

Output

2

Input

4
10 20 10 30

Output

3

Note
In the first test the sequence actually is the suitable subsequence.

In the second test the following subsequence fits: 10, 20, 10.

题意
给定n个数,要求从这n个数中找一个最大的子串,满足:

a1 = p,;
ai = ai - 1 + ( - 1)i + 1·q (i > 1);//其中p,q任取

思路
DP
状态转移方程为

dp[j][i]=dp[k][j]+1;

AC代码

#include<bits/stdc++.h>
using namespace std;
int n,ans,p,k;
int a[4010];
int dp[4010][4010];
int main()
{
    cin>>n;
    for(int i=1; i<=n; i++)
        cin>>a[i];
    int i,j;
    for(i=1;i<=n;i++)
    {
        for(j=0,k=0;j<i;j++)
        {
            dp[j][i]=dp[k][j]+1;
            if(a[i]==a[j])
               k=j;
            ans=max(dp[j][i],ans);
        }
    }
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值