光流场标出视频前景的运动
目的
用光流场方法,标出前景(运动)和背景(静止)。
代码
import numpy as np
import cv2
# 打开摄像头
cap = cv2.VideoCapture(0)
# 角点检测参数(选点30,质量控制参数为0.2,欧拉距离为5,块距离为5)
feature_params = dict( maxCorners = 30,
qualityLevel = 0.2,
minDistance = 5,
blockSize = 5 )
# 光流法参数
lk_params = dict( winSize = (10,10),
maxLevel = 3,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 产生0-255数值的30个rgb随机颜色数组
color = np.random.randint(0,255,(30,3))
# 获取第一帧,找到角点
ret, old_frame = cap.read()
# 获取第一帧的灰度图
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 获取图像中的角点
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# 创建一个蒙版用来画轨迹
mask = np.zeros_like(old_frame)
# 重复进行光流计算及轨迹显示,从而产生动态光流轨迹图
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算光流
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# 选取好的跟踪点
good_old = p0[st == 1]
good_new = p1[st == 1]
# 画出轨迹
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
# 背景与前景运动结合
img = cv2.add(frame,mask)
# 显示轨迹
cv2.imshow('frame',img)
#当按下ESC键时退出显示窗口并关闭摄像头
if cv2.waitKey(50) == 27:
cv2.destroyAllWindows()
cap.release()
break
# 更新上一帧的图像和追踪点
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
结果
