人工智能--数学基础

目录

​编辑2.1 线性代数基础

2.2 微积分及优化理论

2.3 概率论与统计学

2.4 信息论简介


2.1 线性代数基础

线性代数是处理向量空间(包括有限维或无限维)以及这些空间上的线性映射的一门数学分支。在线性代数中,最核心的概念包括向量、矩阵、张量及其运算。

  • 向量:向量可以看作是一个有序的数字列表,通常用来表示一个点的位置或者方向。向量之间可以进行加法、减法和标量乘法等基本运算。
  • 矩阵:矩阵是由m行n列的数字组成的矩形数组。它不仅可以用于表示数据集,也是线性变换的重要工具。矩阵的运算包括加法、乘法(包括矩阵-矩阵乘法和矩阵-向量乘法)、转置等。
  • 张量:张量可以视为多维数组,它是向量和矩阵概念的推广。在深度学习中,张量被广泛使用来存储和操作数据,尤其是在处理图像和视频时。
  • 特征值与特征向量:对于方阵A,如果存在非零向量v和标量λ使得Av=λv,则称λ为A的一个特征值,而v称为对应的特征向量。特征值和特征向量在许多机器学习算法中都扮演着重要角色,如主成分分析(PCA)。
  • 奇异值分解(SVD):SVD是一种重要的矩阵分解技术,它可以将任意矩阵分解为三个矩阵的乘积。这种分解在降维、推荐系统等领域有着广泛应用。
2.2 微积分及优化理论

微积分主要研究函数的变化率(导数)和累积量(积分)。在深度学习中,我们经常需要通过调整参数来最小化某个损失函数,这涉及到梯度下降等优化方法的应用。

  • 导数与偏导数:导数描述了函数在某一点处的变化率;偏导数则是多元函数相对于其中一个变量的变化率。它们是求解局部极小值或极大值的基础。
  • 梯度:梯度是一个向量,包含了所有偏导数的信息。在多变量情况下,梯度指向函数增长最快的方向。
  • 链式法则:链式法则是复合函数求导的基本规则,在反向传播算法中起着至关重要的作用。
  • 泰勒展开:泰勒级数提供了一种近似复杂函数的方法,它基于函数在某一点处的各阶导数值。
  • 凸优化:当目标函数是凸函数时,任何局部最优解都是全局最优解。了解凸优化有助于我们选择合适的优化策略。
  • 梯度下降法:这是寻找函数最小值的一种迭代方法。根据更新方式的不同,又可分为批量梯度下降、随机梯度下降以及小批量梯度下降。
2.3 概率论与统计学

概率论提供了对不确定性和随机现象建模的数学框架,而统计学则关注于从数据中提取有用信息的过程。这两者对于评估模型性能、处理噪声数据等方面至关重要。

  • 随机变量:随机变量是用来量化不确定性的一个概念。它可以是离散的(如掷骰子的结果)或是连续的(如人的身高)。
  • 概率分布:概率分布描述了随机变量取不同值的概率。常见的离散分布有伯努利分布、二项分布;常见的连续分布有多项式分布、正态分布等。
  • 条件概率:给定某一事件发生的条件下,另一事件发生的概率称为条件概率。贝叶斯定理就是基于条件概率的一个重要公式。
  • 期望值与方差:期望值反映了随机变量的平均行为;方差则衡量了随机变量与其均值之间的偏离程度。
  • 最大似然估计:这是一种常用的参数估计方法,其目的是找到使观测数据出现概率最大的模型参数。
  • 假设检验:通过设定原假设和备择假设,利用样本数据来判断是否拒绝原假设的过程。
2.4 信息论简介

信息论是由克劳德·香农提出的,旨在解决通信过程中信息传输效率的问题。它也为我们提供了度量信息内容的方法,并在机器学习中有着广泛应用,特别是在自然语言处理领域。

  • :熵是对信息不确定性的度量。在一个概率分布中,熵越高意味着该分布越均匀,信息的不确定性也就越大。
  • 交叉熵:交叉熵用来衡量两个概率分布之间的差异。在分类问题中,常常用交叉熵作为损失函数。
  • KL散度(Kullback-Leibler Divergence):KL散度也是一种衡量两个分布间差异的方法,但它不是对称的。KL散度在变分推断等高级技术中有重要作用。
  • 互信息:互信息用来衡量两个随机变量之间共享的信息量。高互信息表明两个变量之间有较强的关联性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何遇mirror

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值