《统计学习方法》—— K近邻法

本文详细解析了k近邻算法的关键要素,包括模型、距离度量和k值选择,探讨了Lp距离的不同表现形式,以及kd树的构建与搜索算法,为读者提供了深入理解和应用k近邻算法的全面指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

k近邻法是一种特别好理解的算法。但是即便如此,学完这一章也接触到了很多新的东西。

关键知识点

k近邻法的三个基本要素
  • 模型
  • 距离度量
  • k值的选择
Lp距离,又叫Minkowski距离

Lp距离

  • 有趣的一点是,允许p<1,则有如下图示,在p取各种不同值时,与原点的Lp距离为1的点的图形

Lp距离

kd树
  • 平衡kd树的构造
    • 书中提到使用中位数来构造平衡kd树。有一点没有说清楚的是:是先算中位数,然后取大于且最靠近中位数的实例点,作为切分点。
  • kd树的搜索
    • 书中提到的搜索算法是从根节点出来,定位到包含目标点的区域对应的叶子节点,然后再从下往上依次判断。实际上有另一种方法,就是直接从根节点开始判断,具体算法参考[#1]

TODO

#1 如何理解?

Lp距离中,p取无穷大时的情况。

#2 如何理解?

平衡的kd树搜索时的效率未必是最优的。

参考材料

#1 K-D TREE算法原理及实现
https://leileiluoluo.com/posts/kdtree-algorithm-and-implementation.html/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值