Floyd算法求各个顶点的最短距离-算法分析与实践作业2-1

1.问题

用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵)

2.解析

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0。

我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。

弗洛伊德的核心思想是:对于网中的任意两个顶点(例如顶点 A 到顶点 B)来说,之间的最短路径不外乎有 2 种情况:
直接从顶点 A 到顶点 B 的弧的权值为顶点 A 到顶点 B 的最短路径;
从顶点 A 开始,经过若干个顶点,最终达到顶点 B,期间经过的弧的权值和为顶点 A 到顶点 B 的最短路径。**

所以,弗洛伊德算法的核心为:对于从顶点 A 到顶点 B 的最短路径,拿出网中所有的顶点进行如下判断:
Dis(A,K)+ Dis(K,B)< Dis(A,B)
其中,K 表示网中所有的顶点;Dis(A,B) 表示顶点 A 到顶点 B 的距离。

也就是说,拿出所有的顶点 K,判断经过顶点 K 是否存在一条可行路径比直达的路径的权值小,如果式子成立,说明确实存在一条权值更小的路径,此时只需要更新记录的权值和即可。

任意的两个顶点全部做以上的判断,最终遍历完成后记录的最终的权值即为对应顶点之间的最短路径。

3. 设计

伪代码

枚举顶点k ∈ [1,n]
	以顶点k为中介点,枚举所有顶点对i和j(i ∈ [1,n],j ∈1[1,n])
		如果dis[i][k] + dis[k][j] <dis[i][j]成立
			赋值dis[i][j] = dis[i][k] + dis[k][j]

实验截图:

4. 分析

不会推,ԾㅂԾ,,O(n^3)

5. 源码

https://github.com/Lin02993/Algorithm-Analysis-and-Practice-on-the-job

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值