统计学基础(三):抽样分布定理

本文介绍了统计学中的四个抽样分布定理:包括样本均值的分布、t分布的性质、F分布以及两个样本均值差的t分布。通过定理证明和举例解释了这些概念,帮助理解统计学中的关键定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此为本人学习笔记,不具备参考价值,禁止任何形式的传播

定理一:

X1,X2,…,XnX_1,X_2,\dots,X_nX1,X2,,Xn是来自总体N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2)的样本,则有:
(1)xˉ∼N(μ,σ2n)\bar{x}\sim N(\mu,\frac{\sigma^2}{n})xˉN(μ,nσ2);
(2)xˉ\bar{x}xˉs2s^2s2相互独立;
(3)(n−1)s2σ2∼χ2(n−1)\frac{(n-1)s^2}{\sigma^2}\sim \chi^2(n-1)σ2(n1)s2χ2(n1)

定理二:

X1,X2,…,XnX_1,X_2,\dots,X_nX1,X2,,Xn是来自总体N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2)的样本,则有:
xˉ−μs/n∼t(n−1)\frac{\bar{x}-\mu}{s/\sqrt{n}}\sim t(n-1)s/nxˉμt(n1)
证明:由定理一的(1)知
xˉ∼N(μ,σ2n)\bar{x}\sim N(\mu,\frac{\sigma^2}{n})xˉN(μ,nσ2)

标准化得
xˉ−μσ/n∼N(0,1)\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)σ/nxˉμN(0,1)

由定理一的(3)
(n−1)s2σ2∼χ2(n−1)\frac{(n-1)s^2}{\sigma^2}\sim \chi^2(n-1)σ2(n1)s2χ2(n1)

又由定理一的(2)xˉ\bar{x}xˉs2s^2s2相互独立
∴xˉ−μσ/n(n−1)s2σ2×1n−1∼t(n−1)\therefore\frac{\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)s^2}{\sigma^2}\times\frac{1}{n-1}}}\sim t(n-1)σ2(n1)s2×n11σ/nxˉμt(n1)

化简得
xˉ−μs/n∼t(n−1)\frac{\bar{x}-\mu}{s/\sqrt{n}}\sim t(n-1)s/nxˉμt(n1)

定理三:

X1,X2,…,XnX_1,X_2,\dots,X_nX1,X2,,Xn是来自总体N(μ1,σ12)N(\mu_1,\sigma^2_1)N(μ1,σ12)的样本;Y1,Y2,…,YmY_1,Y_2,\dots,Y_mY1,Y2,,Ym是来自总体N(μ2,σ22)N(\mu_2,\sigma^2_2)N(μ2,σ22)的样本,且两个样本相互独立,则有:
s12/σ12s22/σ22∼F(n−1,m−1)\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n-1,m-1)s22/σ22s12/σ12F(n1,m1)
其中s12,s22s_1^2,s_2^2s12,s22分别是两个样本的样本方差。

证明:
由定理一的(3)知
(n−1)s12σ12∼χ2(n−1)(m−1)s22σ22∼χ2(m−1)\frac{(n-1)s^2_1}{\sigma^2_1}\sim \chi^2(n-1) \quad \frac{(m-1)s^2_2}{\sigma^2_2}\sim \chi^2(m-1)σ12(n1)s12χ2(n1)σ22(m1)s22χ2(m1)
又两个样本相互独立,
根据χ2∼\chi^2\simχ2分布的定义,
(n−1)s12σ12/n−1(m−1)s22σ22/m−1∼F(n−1,m−1)\frac{\frac{(n-1)s^2_1}{\sigma^2_1}/n-1}{\frac{(m-1)s^2_2}{\sigma^2_2}/m-1}\sim F(n-1,m-1)σ22(m1)s22/m1σ12(n1)s12/n1F(n1,m1)
化简得
s12/σ12s22/σ22∼F(n−1,m−1)\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n-1,m-1)s22/σ22s12/σ12F(n1,m1)

定理四:

X1,X2,…,XnX_1,X_2,\dots,X_nX1,X2,,Xn是来自总体N(μ1,σ2)N(\mu_1,\sigma^2)N(μ1,σ2)的样本;Y1,Y2,…,YmY_1,Y_2,\dots,Y_mY1,Y2,,Ym是来自总体N(μ2,σ2)N(\mu_2,\sigma^2)N(μ2,σ2)的样本,且两个样本相互独立,则有
(xˉ−yˉ)−(μ1−μ2)sw1n+1m∼t(n+m−2)\frac{(\bar{x}-\bar{y})-(\mu_1-\mu_2)}{s_w\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim t(n+m-2)swn1+m1(xˉyˉ)(μ1μ2)t(n+m2)
其中xˉ,yˉ,s12,s22\bar{x},\bar{y},s_1^2,s_2^2xˉ,yˉ,s12,s22分别是两个样本的样本均值和样本方差,且
sw2=(n−1)s12+(m−1)s22n+m−2,sw=sw2s_w^2=\frac{(n-1)s_1^2+(m-1)s_2^2}{n+m-2},\quad s_w=\sqrt{s_w^2}sw2=n+m2(n1)s12+(m1)s22,sw=sw2

证明:由定理一知
xˉ∼N(μ1,σ2n),yˉ∼N(μ2,σ2n)\bar{x}\sim N(\mu_1,\frac{\sigma^2}{n}),\bar{y}\sim N(\mu_2,\frac{\sigma^2}{n})xˉN(μ1,nσ2)yˉN(μ2,nσ2)
  ⟹  (xˉ−yˉ)−(μ1−μ2)σ1n+1m∼N(0,1)\implies\quad \frac{(\bar{x}-\bar{y})-(\mu_1-\mu_2)}{\sigma\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim N(0,1)σn1+m1(xˉyˉ)(μ1μ2)N(0,1)

另外又有
(n−1)s12σ2∼χ2(n−1),(m−1)s22σ2∼χ2(m−1)\frac{(n-1)s_1^2}{\sigma^2}\sim \chi^2(n-1),\frac{(m-1)s_2^2}{\sigma^2}\sim \chi^2(m-1)σ2(n1)s12χ2(n1),σ2(m1)s22χ2(m1)

由卡方分布的可加性
(n−1)s12+(m−1)s22σ2∼χ2(n+m−2)\frac{(n-1)s_1^2+(m-1)s_2^2}{\sigma^2}\sim \chi^2(n+m-2)σ2(n1)s12+(m1)s22χ2(n+m2)

因为xˉ,yˉ\bar{x},\bar{y}xˉ,yˉs12,s22s_1^2,s_2^2s12,s22相互独立,由ttt分布定义有:
(xˉ−yˉ)−(μ1−μ2)σ1n+1m(n−1)s12+(m−1)s22σ2/(n+m−2)∼t(n+m−2)\frac{\frac{(\bar{x}-\bar{y})-(\mu_1-\mu_2)}{\sigma\sqrt{\frac{1}{n}+\frac{1}{m}}}}{\sqrt{\frac{(n-1)s_1^2+(m-1)s_2^2}{\sigma^2}/(n+m-2)}}\sim t(n+m-2)σ2(n1)s12+(m1)s22/(n+m2)σn1+m1(xˉyˉ)(μ1μ2)t(n+m2)

化简得
(xˉ−yˉ)−(μ1−μ2)sw1n+1m∼t(n+m−2)\frac{(\bar{x}-\bar{y})-(\mu_1-\mu_2)}{s_w\sqrt{\frac{1}{n}+\frac{1}{m}}}\sim t(n+m-2)swn1+m1(xˉyˉ)(μ1μ2)t(n+m2)

例:设X1,X2,X3,X4X_1,X_2,X_3,X_4X1,X2,X3,X4是来自总体N(0,1)N(0,1)N(0,1)的样本,试确定常数C,使得
P{(x1−x2)2(x1−x2)2+(x3−x4)2>C}=0.95P\{\frac{(x_1-x_2)^2}{(x_1-x_2)^2+(x_3-x_4)^2}>C\}=0.95P{(x1x2)2+(x3x4)2(x1x2)2>C}=0.95

错解:x1−x2∼N(0,2)x_1-x_2\sim N(0,2)x1x2N(0,2)
∴(x1−x2)22∼χ2(1)\therefore\quad \frac{(x_1-x_2)^2}{2}\sim \chi^2(1)2(x1x2)2χ2(1)
同理:
(x1−x2)2+(x3−x4)22∼χ2(2)\frac{(x_1-x_2)^2+(x_3-x_4)^2}{2}\sim \chi^2(2)2(x1x2)2+(x3x4)2χ2(2)
∴(x1−x2)22/1(x1−x2)2+(x3−x4)22/2∼F(1,2)\therefore\quad \frac{\frac{(x_1-x_2)^2}{2}/1}{\frac{(x_1-x_2)^2+(x_3-x_4)^2}{2}/2}\sim F(1,2)2(x1x2)2+(x3x4)2/22(x1x2)2/1F(1,2)
但是这里错了,因为没有证明(x1−x2)22\frac{(x_1-x_2)^2}{2}2(x1x2)2(x1−x2)2+(x3−x4)22\frac{(x_1-x_2)^2+(x_3-x_4)^2}{2}2(x1x2)2+(x3x4)2是相互独立的
正解:(x1−x2)2(x1−x2)2+(x3−x4)2>C\frac{(x_1-x_2)^2}{(x_1-x_2)^2+(x_3-x_4)^2}>C(x1x2)2+(x3x4)2(x1x2)2>C
11+(x3−x4)2(x1−x2)2>C\frac{1}{1+\frac{(x_3-x_4)^2}{(x_1-x_2)^2}}>C1+(x1x2)2(x3x4)21>C
(x3−x4)2(x1−x2)2<1−CC\frac{(x_3-x_4)^2}{(x_1-x_2)^2}<\frac{1-C}{C}(x1x2)2(x3x4)2<C1C
∵x1−x2∼N(0,2)x3−x4∼N(0,2)\because x_1-x_2\sim N(0,2) \\ x_3-x_4\sim N(0,2)x1x2N(0,2)x3x4N(0,2)
∴(x1−x2)22∼χ2(1)(x3−x4)22∼χ2(1)\therefore \frac{(x_1-x_2)^2}{2}\sim \chi^2(1)\quad \frac{(x_3-x_4)^2}{2}\sim \chi^2(1)2(x1x2)2χ2(1)2(x3x4)2χ2(1)
(x1−x2)22,(x3−x4)22\frac{(x_1-x_2)^2}{2},\frac{(x_3-x_4)^2}{2}2(x1x2)22(x3x4)2相互独立
∴(x3−x4)2/1(x1−x2)2/1∼F(1,1)\therefore \quad \frac{(x_3-x_4)^2/1}{(x_1-x_2)^2/1}\sim F(1,1)(x1x2)2/1(x3x4)2/1F(1,1)
1−CC=F0.95(1,1)\frac{1-C}{C}=F_{0.95}(1,1)C1C=F0.95(1,1)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值