make_multilabel_classification的教学举例

本文展示了如何使用sklearn.datasets的make_multilabel_classification生成随机的多标签数据集。通过设定不同参数,例如样本数、特征数、类别数和标签数,可以观察到数据集的变化。示例中比较了n_labels为1和3时的数据分布情况,展示了不同标签数量对数据集的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“”"

Plot randomly generated multilabel dataset

This illustrates the datasets.make_multilabel_classification dataset
generator. Each sample consists of counts of two features (up to 50 in
total), which are differently distributed in each of two classes.

Points are labeled as follows, where Y means the class is present:

=====  =====  =====  ======
  1      2      3    Color
=====  =====  =====  ======
  Y      N      N    Red
  N      Y      N    Blue
  N      N      Y    Yellow
  Y      Y      N    Purple
  Y      N      Y    Orange
  Y      Y      N    Green
  Y      Y      Y    Brown
=====  =====  =====  ======

A star marks the expected sample for each class; its size reflects the
probability of selecting that class label.

The left and right examples highlight the n_labels parameter:
more of the sampl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值