1)凸集,凸函数,凸优化
仿射集
例1:任何一个线性方程的解集一定是一个仿射集
c = { x ∣ A X = b } , A ∈ R m × n , b ∈ R m , x ∈ R n c=\{x|AX = b\},A \in R^{m\times n},b \in R^m,x \in R^n c={
x∣AX=b},A∈Rm×n,b∈Rm,x∈Rn
证明如下:
∀ X 1 , X 2 ∈ c \forall X_1,X_2 \in c ∀X1,X2∈c, A X 1 = b , A X 2 = b AX_1 = b,AX_2 = b AX1=b,AX2=b
θ ∈ R \theta \in R θ∈R, θ X 1 + ( 1 − θ ) X 2 ∈ c \theta X_1 + (1-\theta)X2 \in c θX1+(1−θ)X2∈c
A ( θ X 1 + ( 1 − θ ) X 2 ) = b A(\theta X_1 + (1-\theta)X2) = b A(θX1+(1−θ)X2)=b
= θ A X 1 + ( 1 − θ ) A X 2 =\theta AX_1 +(1-\theta)AX_2 =θAX1+(1−θ)AX2
= b =b =b
例2:
v = { X − X 0 ∣ X ∈ c } , ∀ X 0 ∈ c v = \{ X-X_0|X \in c\},\forall X_0 \in c v={
X−X0∣X∈c},∀X0∈c
= { X − X 0 ∣ A X = b } , A X 0 = b = \{X-X_0|AX = b\},AX_0 = b ={
X−X0∣AX=b},AX0=b
{ X − X 0 ∣ A ( X − X 0 )