import os
from PIL import Image
from PIL import ImageEnhance
import cv2
import tensorflow as tf
import numpy as np
"""
1、对比度:白色画面(最亮时)下的亮度除以黑色画面(最暗时)下的亮度;
2、色彩饱和度::彩度除以明度,指色彩的鲜艳程度,也称色彩的纯度;
3、色调:向负方向调节会显现红色,正方向调节则增加黄色。适合对肤色对象进行微调;
4、锐度:是反映图像平面清晰度和图像边缘锐利程度的一个指标。
"""
def augument(image_path, parent):
image = Image.open(image_path)
image_name = os.path.split(image_path)[1]
name = os.path.splitext(image_name)[0]
enh_bri = ImageEnhance.Brightness(image)
brightness = 1.5
image_brightened1 = enh_bri.enhance(brightness)
image_brightened1.save(os.path.join(parent, '{}_bri1.jpg'.format(name)))
变暗
enh_bri = ImageEnhance.Brightness(image)
brightness = 0.8
image_brightened2 = enh_bri.enhance(brightness)
image_brightened2.save(os.path.join(parent, '{}_bri2.jpg'.format(name)))
enh_col = ImageEnhance.Color(image)
color = 1.5
image_colored1 = enh_col.enhance(color)
image_colored1.save(os.path.join(parent, '{}_col1.jpg'.format(name)))
enh_col = ImageEnhance.Color(image)
color = 0.8
image_colored1 = enh_col.enhance(color)
image_colored1.save(os.path.join(parent, '{}_col2.jpg'.format(name)))
enh_con = ImageEnhance.Contrast(image)
contrast = 1.5
image_contrasted1 = enh_con.enhance(contrast)
image_contrasted1.save(os.path.join(parent, '{}_con1.jpg'.format(name)))
enh_con = ImageEnhance.Contrast(image)
contrast = 0.8
image_contrasted2 = enh_con.enhance(contrast)
image_contrasted2.save(os.path.join(parent, '{}_con2.jpg'.format(name)))
enh_sha = ImageEnhance.Sharpness(image)
sharpness = 3.0
image_sharped1 = enh_sha.enhance(sharpness)
image_sharped1.save(os.path.join(parent, '{}_sha1.jpg'.format(name)))
enh_sha = ImageEnhance.Sharpness(image)
sharpness = 0.8
image_sharped2 = enh_sha.enhance(sharpness)
image_sharped2.save(os.path.join(parent, '{}_sha2.jpg'.format(name)))
def enh(image_path, parent):
img = cv2.imread(image_path)
image_name = os.path.split(image_path)[1]
name = os.path.splitext(image_name)[0]
img = cv2.resize(img, (250, 250), interpolation=cv2.INTER_CUBIC)
crop_img = tf.random_crop(img, [224, 224, 3])
cv2.imwrite(os.path.join(parent, '{}_crop.jpg'.format(name)), crop_img.eval())
v_flip_img = tf.image.random_flip_up_down(img)
cv2.imwrite(os.path.join(parent, '{}_ v_flip.jpg'.format(name)), v_flip_img.eval())
h_flip_img = tf.image.random_flip_left_right(img)
cv2.imwrite(os.path.join(parent, '{}_ h_flip.jpg'.format(name)), h_flip_img.eval())
rows, cols = img.shape[:2]
src_points = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1]])
dst_points = np.float32([[0, 0], [int(0.6 * (cols - 1)), 0], [int(0.4 * (cols - 1)), rows - 1]])
affine_matrix = cv2.getAffineTransform(src_points, dst_points)
img_Aff = cv2.warpAffine(img, affine_matrix, (cols, rows))
cv2.imwrite(os.path.join(parent, '{}_ Aff.jpg'.format(name)), img_Aff.eval())
dir = 'img\\num'
for parent, dirnames, filenames in os.walk(dir):
for filename in filenames:
fullpath = os.path.join(parent + '\\', filename)
sess = tf.InteractiveSession()
enh(fullpath, parent)
sess.close()
augument(fullpath, dirnames)