2019南昌网络赛连接:https://www.jisuanke.com/contest/2290?view=challenges
I. Max answer
题意: 给你一个序列,问任意一个区间,区间和×区间最小值,结果最大为多少。
题解: 区间问题,很容易想到线段树,区间和问题,很容易想到做前缀和相减。所以我们可以用单调栈维护出每个a[i]作为区间最小值所对应的区间 [ l[i],r[i] ],如果a[i]为正数,则要找出在这个区间的子区间(要包含a[i])和最大。也就是sum[r]-sum[l-1]最大,也就是sum[r]最大,sum[l-1]最小。所以线段树维护区间内,前缀和的最大值和最小值。对于每个a[i],如果大于0,找[ l[i]-1,i-1] 的最小值(注意是i-1,这样才能保证a[i]包括在里面),[ i,r[i] ]的最大值。a[i]小于0则反过来。
AC代码:
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <string>
#include <cmath>
#include <ctime>
#include <queue>
#include<stack>
#include <map>
#include <set>
#include<fstream>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
typedef long long LL;
const int N = 5e5 + 5;
const ll INF =1e17;
const int mod = 1000000007;
int a[N], l[N], r[N];
ll sum[N];
struct node
{
ll mi, ma;
}tree[N<<2];
void up(int i)
{
tree[i].mi = min(tree[i<<1].mi,tree[i<<1|1].mi);
tree[i].ma = max(tree[i << 1].ma, tree[i << 1 | 1].ma);
}
void build(int i, int l, int r)
{
if (l == r) {
tree[i].mi = tree[i].ma = sum[l];
return;
}
int mid = (l + r) / 2;
build(i<<1,l,mid);
build(i<<1|1,mid+1,r);
up(i);
}
ll query(int i, int L, int R, int l, int r,int flag) // flag 1是最大值 0是最小值
{
if (l <= L && r >= R) {
if (flag)
return tree[i].ma;
else
return tree[i].mi;
}
int mid = (L+R)/2;
if (r <= mid) {
return query(i<<1,L,mid,l,r,flag);
}
else if (l > mid) {
return query(i << 1 | 1, mid + 1, R, l, r, flag);
}
else {
if(flag)
return max(query(i << 1, L, mid, l, r, flag), query(i << 1 | 1, mid + 1, R, l, r, flag));
else
return min(query(i << 1, L, mid, l, r, flag), query(i << 1 | 1, mid + 1, R, l, r, flag));
}
}
int main()
{
int n;
scanf("%d",&n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
sum[i] = sum[i - 1] + a[i];
}
a[0] = -INF; a[n + 1] = -INF;
stack<int>S;
S.push(0);
for (int i = 1; i <= n; i++) {//预处理左区间
while (a[S.top()] >= a[i]) S.pop();
l[i] = S.top()+1;
S.push(i);
}
while (!S.empty())//注意清空
S.pop();
S.push(n+1);
for (int i = n; i>0; i--) {//右区间
while (a[S.top()] >= a[i]) S.pop();
r[i] = S.top()-1;
S.push(i);
}
build(1,0,n);
ll ans = -1,mi,ma;
for (int i = 1; i <= n; i++) {//用线段树查询
if (a[i] >= 0) {
ma = query(1,0,n,i,r[i],1);
mi = query(1,0,n,l[i]-1,i-1,0);
ans = max(ans,a[i]*(ma-mi));
}
else {
mi = query(1, 0, n, i, r[i],0);
ma = query(1, 0, n, l[i]-1,i-1,1);
ans = max(ans, a[i] * (mi - ma));
}
}
printf("%lld\n",ans);
return 0;
}
J. Distance on the tree
题意: 给你一棵树,边上有边权,问两个节点间边权小于K的有多少个。
题解: 树上距离,很容易想到树链剖分,标记好dfs序,每条链的top(链的顶端),每个点的父节点fa,深度dep ,树上两个点的距离就是不断u=fa[top[u]]直到两个点的top一样,具体看代码,不难理解。边权小于k就是主席树了,维护区间dfs序各个边权出现的次数,注意离散化。
AC代码:
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <string>
#include <cmath>
#include <ctime>
#include <queue>
#include<stack>
#include <map>
#include <set>
#include<fstream>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
const int INF = 0x3f3f3f3f;
int n, m,num;
int head[N],cnt,temp[N],value[N],fa[N],dep[N],siz[N],son[N];
int dfn[N], inv[N],top[N];
int tree[N * 20], ls[N * 20], rs[N * 20], sum[N * 20];
struct node
{
int u, v,w,next;
}edge[N<<1],q[N];
void add(int u, int v, int w)
{
cnt++;
edge[cnt] = { u,v,w,head[u] };
head[u] = cnt;
}
void dfs1(int u,int f,int w)
{
fa[u] = f;
dep[u] = dep[f] + 1;
siz[u] = 1;
value[u] = w;
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v; w = edge[i].w;
if (v == f)
continue;
dfs1(v,u,w);
siz[u] += siz[v];
if (siz[v] > siz[son[u]]) {
son[u] = v;
}
}
}
void dfs2(int u, int f)
{
cnt++;
dfn[u] = cnt;
inv[cnt] = u;
top[u] = f;
if (son[u] != 0)
dfs2(son[u],f);
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v, w = edge[i].w;
if (v != fa[u]&&v!=son[u])
dfs2(v,v);
}
}
void Build(int& o, int l, int r) {
o = ++cnt;
sum[o] = 0;
if (l == r) return;
int m = (l + r) >> 1;
Build(ls[o], l, m);
Build(rs[o], m + 1, r);
}
void update(int& o, int l, int r, int last, int p) {
o = ++cnt;
ls[o] = ls[last];
rs[o] = rs[last];
if (l == r) {
sum[o]=sum[last]+1;
return;
}
int m = (l + r) >> 1;
if (p <= m) update(ls[o], l, m, ls[last], p);
if(p>m) update(rs[o], m + 1, r, rs[last], p);
sum[o] = sum[ls[o]] + sum[rs[o]];
}
int query(int ss, int tt, int l, int r, int k) {
if (1<=l &&k>=r)
return sum[tt] - sum[ss];
int m = (l + r) >> 1;
int ans=0;
if (1 <= m)
ans+=query(ls[ss], ls[tt], l, m, k);
if(k>m)
ans+=query(rs[ss], rs[tt], m + 1, r, k);
return ans;
}
int ask(int u, int v, int w)
{
int fu = top[u], fv = top[v],ans=0;
while (fu != fv) {
if (dep[fu] < dep[fv])
swap(u,v),swap(fu,fv);
ans += query(tree[dfn[fu]-1], tree[dfn[u]], 1, num+1, w);
u = fa[fu];
fu = top[u];
}
if (dep[u] < dep[v])
swap(u, v);
ans += query(tree[dfn[v]], tree[dfn[u]], 1, num+1, w);
return ans;
}
int main()
{
int u, v, w;
memset(head, -1, sizeof(head));
cnt = 0;
scanf("%d%d", &n, &m);
for (int i = 1; i < n; i++) {
scanf("%d%d%d", &u, &v, &w);
temp[i] = w;
add(u,v,w);
add(v, u, w);
}
dfs1(1,0,INF);
cnt = 0;
dfs2(1,1); //树链剖分
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &u, &v, &w);
q[i] = { u,v,w };
temp[n + i] = w;
}
sort(temp+1,temp+n+m);
num = unique(temp+1,temp+n+m)-temp-1;
for (int i = 1; i <= n; i++) {
value[i] = lower_bound(temp+1,temp+num+1,value[i])-temp; //离散化
}
cnt = 0;
Build(tree[0], 1, num+1);
for (int i = 1; i <= n; i++) {
update(tree[i], 1, num+1, tree[i - 1], value[inv[i]]); //建树,按dfs序
}
for (int i = 0; i < m; i++) {
q[i].w = lower_bound(temp + 1, temp + num+1, q[i].w) - temp;
printf("%d\n",ask(q[i].u,q[i].v,q[i].w));
}
return 0;
}