Monkey and Banana dp-动态规划

本文介绍了一个使用动态规划解决的问题——如何帮助猴子通过堆叠不同尺寸的方块来拿到高处的香蕉。比赛要求参赛者编写程序确定能堆叠的最高方块塔的高度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Monkey and Banana dp-动态规划

Time limit:1000 ms Memory limit:32768 kB Source: University of Ulm Local Contest 1996

描述

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

输入

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.

输出

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format “Case case: maximum height = height”.

Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

代码

#include <bits/stdc++.h>

#define PI 3.14159265358979383246
#define LL long long
#define INF 0x3f3f3f3f  

#define _for(i, a) for(int i = 0; i < (a); ++i)
#define _rep(i, a, b) for(int i = (a); i < (b); ++i)
#define _forit(a, b) for(a::iterator it = b.begin(); it != b.end(); it++)


using namespace std;

struct blo {
	int l, w, h;
};

struct cmpFunctors {
	inline bool operator()(const struct blo &a, const struct blo &b) {
		if (a.l != b.l) return a.l < b.l;
		else return a.w < b.w;
	}
};

blo a[185], dat[185];
int t = 0;
int dp[185];

int main() {
	std::ios::sync_with_stdio(false);
	//freopen("input.txt", "r", stdin);

	int q = 1;
	int n = 0;
	while (cin >> n, n) {
		t = 0;
		int l, w, h;
		_for(i, n) {
			cin >> l >> w >> h;
			dat[t].l = l; dat[t].w = w; dat[t++].h = h;
			dat[t].l = l; dat[t].w = h; dat[t++].h = w;
			dat[t].l = w; dat[t].w = l; dat[t++].h = h;
			dat[t].l = w; dat[t].w = h; dat[t++].h = l;
			dat[t].l = h; dat[t].w = w; dat[t++].h = l;
			dat[t].l = h; dat[t].w = l; dat[t++].h = w;
		}
		sort(dat, dat + t, cmpFunctors());
		//_for(i, t) {
		//	cout << dat[i].l << ' ' << dat[i].w << ' ' << dat[i].h << '\n';
		//}
		int _max;
		_for(i, t) {
			_max = 0;
			_for(j, i) {
				if (dat[j].l < dat[i].l&&dat[j].w < dat[i].w) {
					_max = max(_max, dp[j]);
				}
			}
			dp[i] = dat[i].h + _max;
		}
		_max = 0;
		_for(i, t) {
			_max = max(_max, dp[i]);
		}
		cout << "Case " << q++ << ": maximum height = " << _max << '\n';
	}
	return 0;
}

本人也是新手,也是在学习中,勿喷

转载请注明出处

欢迎有问题的小伙伴一起交流哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值