【导读】传统的肉眼识别方法是很难直接识别出 NIs (自然图像) 和 CG (计算机生成的图像)。本文中提出了一种高效的、基于卷积神经网络 (CNN) 的图像识别方法。通过大量的实验来评估模型的性能。实验结果表明,该方法优于现有的其他识别方法,与传统方法中采用 CNN 模型来识别图像,此方法还能借助高级可视化工具。
▌ 摘要
考虑到对现有的 CCNs 从头开始训练或微调预训练网络都具有一定的局限性,这个研究提出了一种更合适的想法:设计阶段在 CNN 模型的底部增加了两个级联卷积层。该网络能够根据不同大小的图像输入,进行自适应地调整,同时保持固定的深度,以稳定 CNN 结构并实现良好的识别表现。对于所提出的模型,我们采用一种称为“局部到全局”的策略,即 CNN 能够获取局部图像的识别决策,而全局的识别决策可通过简单的投票方式获得。我们通过大量的实验来评估模型的性能。实验结果表明,该方法优于现有的其他识别方法,且在后处理的图像上也具有较好的鲁棒性。此外,相比于传统方法中采用 CNN 模型来识别图像,我们的方法还能借助高级可视化工具,进一步可视化地了解 NIs 与 CG 之间的差异。
▌简介
当前,对 NIs 和 CG 的图像识别研究已经得到了广泛的关注。解决这个问题的主要挑战在于 NIs 与 CG 有近乎相同的写实性及图像模式。先前的研究通常都是人工设计一些可判别的特征,来区别 NIs 和 CG。但这些方法普遍存在的问题是人为设计的特征对于给定的图像识别问题来说,并不一定是最适合的,特别对于一些复杂的数据库而言,该方法的识别效果更差。
相比于需要先验知识和假设条件的传统方法,卷积神经网络 (CNN) 能够自动地从数据中学习目标的特征及其抽象表征,这使得它能够更广泛适用于一些复杂的数据库。本文,我们提出一种基于 CNN 的框架来识别 NIs 和 CG。这是一种以端到端的方式进行自动特征学习,而无需进行人为设计图像特征的框架。我们的工作主要总结如下:
提出了一种基于 CNN 的 NIs 与 CG 的通用识别框架,通过微调它能够自适应于不同尺寸的图像输入块。
对微调训练后的 CNN 模型,我们针对性地设计了一种改进方案以改进我们的识别表现,这两种基于 CNN 的方案都