基于Centos7和Hadoop3.1.3搭建完全分布式集群(2)
目录
一、搭建完全分布式集群运行模式
分析:
1)准备3台客户机(关闭防火墙、静态ip、主机名称)
2)安装JDK
3)配置环境变量
4)安装Hadoop
5)配置环境变量
6)配置集群
7)单点启动
8)配置ssh
9)群起并测试集群
二、相关环境配置
虚拟机准备、JDK、HADOOP安装配置详见基于Centos7和Hadoop3.1.3搭建完全分布式集群(1)----虚拟机环境准备篇
2.1 编写集群分发脚本xsync
1)scp(secure copy)安全拷贝
(1)scp定义:
scp可以实现服务器与服务器之间的数据拷贝。(from server1 to server2)
(2)基本语法
scp -r $pdir/$fname $user@hadoop$host:$pdir/$fname
命令 递归 要拷贝的文件路径/名称 目的用户@主机:目的路径/名称
2)rsync远程同步工具
rsync主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。
rsync和scp区别:用rsync做文件的复制要比scp的速度快,rsync只对差异文件做更新。scp是把所有文件都复制过去。
(1)基本语法
rsync -av $pdir/$fname $user@hadoop$host:$pdir/$fname
命令 选项参数 要拷贝的文件路径/名称 目的用户@主机:目的路径/名称
选项参数说明
选项 | 功能 |
---|---|
-a | 归档拷贝 |
-v | 显示复制过程 |
3)xsync集群分发脚本
(1)需求:循环复制文件到所有节点的相同目录下
(2)需求分析:
(a)rsync命令原始拷贝:
rsync -av /opt/module root@hadoop103:/opt/
(b)期望脚本:
xsync要同步的文件名称
(c)说明:在/home/hadoop/bin这个目录下存放的脚本,hadoop用户可以在系统任何地方直接执行。
(3)脚本实现
(a)在/home/hadoop目录下创建xsync文件
cd /home/hadoop
vim xsync
在该文件中编写如下代码
#!/bin/bash
#1. 判断参数个数
if [ $# -lt 1 ]
then
echo Not Enough Arguement!
exit;
fi
#2. 遍历集群所有机器
for host in hadoop102 hadoop103 hadoop104
do
echo ==================== $host ====================
#3. 遍历所有目录,挨个发送
for file in $@
do
#4 判断文件是否存在
if [ -e $file ]
then
#5. 获取父目录
pdir=$(cd -P $(dirname $file); pwd)
#6. 获取当前文件的名称
fname=$(basename $file)
ssh $host "mkdir -p $pdir"
rsync -av $pdir/$fname $host:$pdir
else
echo $file does not exists!
fi
done
done
(b)修改脚本 xsync 具有执行权限
chmod +x xsync
(c)将脚本移动到/bin中,以便全局调用
sudo mv xsync /bin/
(d)测试脚本
sudo xsync /bin/xsync
2.2 配置SSH无密登录
1)配置ssh
(1)基本语法
ssh另一台电脑的ip地址
(2)ssh连接时出现Host key verification failed的解决方法
ssh hadoop103
出现:
The authenticity of host '192.168.1.103 (192.168.1.103)' can't be established.
RSA key fingerprint is cf:1e:de:d7:d0:4c:2d:98:60:b4:fd:ae:b1:2d:ad:06.
Are you sure you want to continue connecting (yes/no)?
(3)解决方案如下:直接输入yes
2)无密钥配置
(1)免密登录原理
(2)生成公钥和私钥:
ssh-keygen -t rsa
然后敲(三个回车),就会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥)
(3)将公钥拷贝到要免密登录的目标机器上
ssh-copy-id hadoop102
ssh-copy-id hadoop103
ssh-copy-id hadoop104
注意:
还需要在hadoop102上采用root账号,配置一下无密登录到hadoop102、hadoop103、hadoop104;
还需要在hadoop103上采用hadoop账号配置一下无密登录到hadoop102、hadoop103、hadoop104服务器上。
3).ssh文件夹下(~/.ssh)的文件功能解释
known_hosts | 记录ssh访问过计算机的公钥(public key) |
---|---|
id_rsa | 生成的私钥 |
id_rsa.pub | 生成的公钥 |
authorized_keys | 存放授权过的无密登录服务器公钥 |
三、集群配置
1)集群部署规划
注意:NameNode和SecondaryNameNode不要安装在同一台服务器
注意:ResourceManager也很消耗内存,不要和NameNode、SecondaryNameNode配置在同一台机器上。
2)配置集群
(1)核心配置文件
配置core-site.xml
cd $HADOOP_HOME/etc/hadoop
vim core-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!--指定HDFS中NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop102:9820</value>
</property>
<!-- 指定Hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-3.1.3/data</value>
</property>
<!-- 通过web界面操作hdfs的权限 -->
<property>
<name>hadoop.http.staticuser.user</name>
<value>hadoop</value>
</property>
<!-- 后面hive的兼容性配置 -->
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
</configuration>
(2)HDFS配置文件
配置hdfs-site.xml
vim hdfs-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop104:9868</value>
</property>
</configuration>
(3)YARN配置文件
配置yarn-site.xml
vim yarn-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- Reducer获取数据的方式-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定YARN的ResourceManager的地址-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop103</value>
</property>
<!-- 环境变量通过从NodeManagers的容器继承的环境属性,对于mapreduce应用程序,除了默认值 hadoop op_mapred_home应该被添加外。属性值 还有如下-->
<property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property>
<!-- 解决Yarn在执行程序遇到超出虚拟内存限制,Container被kill -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!-- 后面hive的兼容性配置 -->
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>512</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>4096</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
</configuration>
(4)MapReduce配置文件
配置mapred-site.xml
vim mapred-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- 指定MR运行在Yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
3)在集群上分发配置好的Hadoop配置文件
xsync /opt/module/hadoop-3.1.3/etc/hadoop/
4)查看文件分发情况
cat /opt/module/hadoop-3.1.3/etc/hadoop/core-site.xml
四、群起集群
1)配置workers
vim /opt/module/hadoop-3.1.3/etc/hadoop/workers
在该文件中增加如下内容:
hadoop102
hadoop103
hadoop104
注意:该文件中添加的内容结尾不允许有空格,文件中不允许有空行。
同步所有节点配置文件
xsync /opt/module/hadoop-3.1.3/etc
2)启动集群
(1)如果集群是第一次启动,需要在hadoop102节点格式化NameNode(注意格式化之前,一定要先停止上次启动的所有namenode和datanode进程,然后再删除data和log数据)
hdfs namenode -format
(2)启动HDFS
sbin/start-dfs.sh
(3)在配置了ResourceManager的节点(hadoop103)启动YARN
sbin/start-yarn.sh
(4)Web端查看SecondaryNameNode
(a)浏览器中输入:http://hadoop104:9868/status.html
(b)查看SecondaryNameNode信息
解决看不到上面页面内容的办法
路径:$HADOOP_HOME/share/hadoop/hdfs/webapps/static
查看dfs-dust.js的第61行
'date_tostring' : function (v) {
return moment(Number(v)).format('ddd MMM DD HH:mm:ss ZZ YYYY');
},
并修改函数返回值如下:
'date_tostring' : function (v) {
return new Date(Number(v)).toLocaleString();
},
3)集群基本测试
(1)上传文件到集群
上传小文件
hadoop fs -mkdir -p /user/hadoop/input
hadoop fs -put $HADOOP_HOME/wcinput/wc.input /user/hadoop/input
上传大文件
hadoop fs -put /opt/software/hadoop-3.1.3.tar.gz /
(2)上传文件后查看文件存放在什么位置
(a)查看HDFS文件存储路径
[hadoop@hadoop102 subdir0]$ pwd
/opt/module/hadoop-3.1.3/data/tmp/dfs/data/current/BP-938951106-192.168.10.107-1495462844069/current/finalized/subdir0/subdir0
(b)查看HDFS在磁盘存储文件内容
[hadoop@hadoop102 subdir0]$ cat blk_1073741825
hadoop yarn
hadoop mapreduce
hadoop
hadoop
(3)拼接
-rw-rw-r--. 1 hadoop hadoop 134217728 5月 23 16:01 blk_1073741836
-rw-rw-r--. 1 hadoop hadoop 1048583 5月 23 16:01 blk_1073741836_1012.meta
-rw-rw-r--. 1 hadoop hadoop 63439959 5月 23 16:01 blk_1073741837
-rw-rw-r--. 1 hadoop hadoop 495635 5月 23 16:01 blk_1073741837_1013.meta
[hadoop@hadoop102 subdir0]$ cat blk_1073741836>>tmp.jar
[hadoop@hadoop102 subdir0]$ cat blk_1073741837>>tmp.jar
[hadoop@hadoop102 subdir0]$ tar -zxvf tmp.jar
(4)下载
[hadoop@hadoop102 hadoop-3.1.3]$ bin/hadoop fs -get
/hadoop-3.1.3.tar.gz ./
(5)执行wordcount程序
[hadoop@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /user/hadoop/input /user/hadoop/output
五、集群启动/停止方式总结
1)各个服务组件逐一启动/停止
(1)分别启动/停止HDFS组件
hdfs --daemon start/stop namenode/datanode/secondarynamenode
(2)启动/停止YARN
yarn --daemon start/stop resourcemanager/nodemanager
2)各个模块分开启动/停止(配置ssh是前提)常用
(1)整体启动/停止HDFS
start-dfs.sh/stop-dfs.sh
(2)整体启动/停止YARN
start-yarn.sh/stop-yarn.sh
六、配置历史服务器
为了查看程序的历史运行情况,需要配置一下历史服务器。具体配置步骤如下:
1)配置mapred-site.xml
vi mapred-site.xml
在该文件里面增加如下配置。
<!-- 历史服务器端地址 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop102:10020</value>
</property>
<!-- 历史服务器web端地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop102:19888</value>
</property>
2)分发配置
xsync $HADOOP_HOME/etc/hadoop/mapred-site.xml
3)在hadoop102启动历史服务器
mapred --daemon start historyserver
4)查看历史服务器是否启动
jps
5)查看JobHistory
http://hadoop102:19888/jobhistory
七、 配置日志的聚集
日志聚集概念:应用运行完成以后,将程序运行日志信息上传到HDFS系统上。
日志聚集功能好处:可以方便的查看到程序运行详情,方便开发调试。
注意:开启日志聚集功能,需要重新启动NodeManager 、ResourceManager和HistoryManager。
开启日志聚集功能具体步骤如下:
1)配置yarn-site.xml
vim yarn-site.xml
在该文件里面增加如下配置。
<!-- 开启日志聚集 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 访问路径-->
<property>
<name>yarn.log.server.url</name>
<value>http://hadoop102:19888/jobhistory/logs</value>
</property>
<!-- 保存的时间7天 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
2)分发配置
xsync $HADOOP_HOME/etc/hadoop/yarn-site.xml
3)关闭NodeManager 、ResourceManager和HistoryServer
在103上执行: stop-yarn.sh
在102上执行: mapred --daemon stop historyserver
4)启动NodeManager 、ResourceManage、Timelineserver和HistoryServer
在103上执行:start-yarn.sh
在103上执行:yarn --daemon start timelineserver
在102上执行:mapred --daemon start historyserver
5)删除HDFS上已经存在的输出文件
hdfs dfs -rm -R /user/hadoop/output
6)执行WordCount程序
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /user/hadoop/input /user/hadoop/output
7)查看日志
http://hadoop102:19888/jobhistory
图 Job History
图 job运行情况
图 查看日志
八、集群时间同步
时间同步的方式:找一个机器,作为时间服务器,所有的机器与这台集群时间进行定时的同步,比如,每隔十分钟,同步一次时间。
配置时间同步具体实操:
1)时间服务器配置(必须root用户)
(1)在所有节点关闭ntp服务和自启动
sudo systemctl stop ntpd
sudo systemctl disable ntpd
(2)修改ntp配置文件
vim /etc/ntp.conf
修改内容如下
a)修改1(授权192.168.1.0-192.168.1.255网段上的所有机器可以从这台机器上查询和同步时间)
#restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
改为
restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
b)修改2(集群在局域网中,不使用其他互联网上的时间)
server 0.centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.pool.ntp.org iburst
server 3.centos.pool.ntp.org iburst
为
#server 0.centos.pool.ntp.org iburst
#server 1.centos.pool.ntp.org iburst
#server 2.centos.pool.ntp.org iburst
#server 3.centos.pool.ntp.org iburst
c)添加3(当该节点丢失网络连接,依然可以采用本地时间作为时间服务器为集群中的其他节点提供时间同步)
server 127.127.1.0
fudge 127.127.1.0 stratum 10
(3)修改/etc/sysconfig/ntpd 文件
vim /etc/sysconfig/ntpd
增加内容如下(让硬件时间与系统时间一起同步)
SYNC_HWCLOCK=yes
(4)重新启动ntpd服务
systemctl start ntpd
(5)设置ntpd服务开机启动
systemctl enable ntpd
2)其他机器配置(必须root用户)
(1)在其他机器配置10分钟与时间服务器同步一次
crontab -e
编写定时任务如下:
*/10 * * * * /usr/sbin/ntpdate hadoop102
(2)修改任意机器时间
date -s "2017-9-11 11:11:11"
(3)十分钟后查看机器是否与时间服务器同步
date
说明:测试的时候可以将10分钟调整为1分钟,节省时间。