深层循环神经网络(DRNN)

本文介绍了深层循环神经网络(DRNN)的概念及其在TensorFlow中的实现方式。DRNN通过增加循环体层数来提高模型表达能力,并探讨了如何在不同层间应用dropout以提升网络鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深层循环神经网络(DRNN)

DRNN可以增强模型的表达能力,主要是将每个时刻上的循环体重复多次,每一层循环体中参数是共享的,但不同层之间的参数可以不同。DRNN结构图如图5所示。

TensorFlow中可以通过rnn_cell.MultiRNNCell([lstm] * number_of_layer)来构建DRNN,其中number_of_layer表示了有多少层。

在我们构建自己的任务模型时,往往会设置dropout来让构建的网络模型更加健壮,类似在卷积神经网络只在最后全连接层使用dropout,DRNN一般只在不同层循环体结构中使用dropout,而不在同一层的循环体结构中使用。即从时刻t-1传递到t时刻时,RNN不进行状态的dropout,但在同一时刻t中,不同层循环体之间会使用dropout,图6展示了DRNN中使用dropout,其中实线箭头表示不使用dropout,虚线箭头表示使用dropout。

TensorFlow中可以使用tf.nn.rnn_cell.DropoutWrapper类来实现dropout功能


 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值