前言
本系列分享前七篇分别讲述了
- LangChain&LangGraph的核心原理
- LangChain接入大模型的基本方法
- LangChain核心概念——链
- LangChain记忆存储与多轮对话机器人搭建
- LangChain接入工具基本流程
- LangChain Agent API快速搭建智能体
- LangChain多智能体浏览器自动化
上篇文章分享了如何利用LangChain调用PlayWright工具函数搭建智能体实现浏览器自动化, 大家学习完成后基本掌握了LangChain编写大模型智能体调用外部工具函数的技巧。随着大模型技术的不断发展,借助MCP技术快速实现智能体已经成为当前智能体开发的首选方法,作为宇宙第一Agent开发框架,LangChain自然也具备与MCP服务器对接的强大功能,本期分享我们一起来学习LangChain接入MCP的完整实现流程。
本系列分享是笔者结合自己学习工作中使用LangChain&LangGraph经验倾心编写,力求帮助大家体系化快速掌握LangChain&LangGraph AI Agent智能体开发的技能!大家感兴趣可以关注笔者优快云账号和系列专栏。更可关注笔者同名微信公众号: 大模型真好玩, 每期分享涉及的代码均可在公众号私信: LangChain智能体开发获得。
一、MCP知识点回顾
MCP(全称是Model Context Protocol,模型上下文协议), 是由Claude母公司Anthropic于2024年11月正式提出。

MCP的核心作用是统一了Agent开发过程中大模型调用外部工具的技术实现流程,从而大幅提高了Agent开发效率。在MCP诞生前,大模型通过Function Calling技术与工具函数对接,不同的工具函数有不同的调用方式,要连接这些外部工具开发Agent就必须“每一把锁单独配一把钥匙”,开发工作非常繁琐。

而MCP的诞生,则统一了这些外部工具的调用流程,使得无论什么样的工具都可以借助MCP技术按照统一的流程快速接入到大模型中从而大幅加快Agent开发效率。这就好比现在很多设备都可以使用type-c和电脑连接。

从技术实现角度,我们可以将MCP看成是Function Calling的一种封装,通过server-client架构和一整套开发工具来规范化Function Calling开发流程。程序员可以根据MCP协议开发包含不同工具功能的MCP服务端,并将这些服务端分享出来方便大家接入,减少了重复的开发工作,大大加速了Agent开发效率。

此前笔者曾分享了MCP从入门到精通的多篇文章,在学习本篇分享前大家需简单了解MCP完整技术体系,详细内容可见笔者优快云专栏: MCP怎么玩?
二、MCP+LangChain基础调用流程
本期分享我们使用LangChain编写代码调用PlayWright MCP实现浏览器自动化。LangChain调用MCP的原理是将MCP的工具函数直接转换为LangChain的工具函数,然后通过预定义的MCP_Client实现与自行编写或者官方MCP Server的读写操作。简而言之,我们只需要使用LangChain编写MCP Client 客户端代码即可。
2.1 环境搭建
- 首先在我们之前创建的
anaconda虚拟环境langchainenv中执行如下命令安装LangChain MCP的相关依赖:
pip install langchain-mcp-adapters

- 其次要调用PlayWright官方的浏览器工具需要本地安装node.js,详细的安装流程这里不再赘述,大家可参考我的文章不写一行代码! VsCode+Cline+高德地图MCP Server 帮你搞定和女友的出行规划(附原理解析)。
- 最后编写配置文件,在项目目录下新建
servers_config.json文件,在mcp汇总网站中找到PlayWright的配置并写入servers_config.json文件中,同时添加MCP通信方式的配置项transport。servers_config.json完整内容如下, 基本原理是通过npx下载PlayWright MCP Server到本地并通过stdio方式与LangChain搭建的MCP Client进行通信。
{
"mcpServers": {
"playwright": {
"command": "npx",
"args": [
"@playwright/mcp@latest"
],
"transport": "stdio"
}
}
}

2.2 使用LangChain实现MCP Client
- 引入相关依赖, LangChain通过
MultiServerMCPClient构建MCP服务端连接工具。
import asyncio
import json
import logging

最低0.47元/天 解锁文章
4115

被折叠的 条评论
为什么被折叠?



