利用朴素贝叶斯方法,进行垃圾邮件分类,email文件夹下包含了25个正常留言和25个非正常留言的数据,训练一个贝叶斯分类器,并测试分类器。
bayes.py包含了所有函数的实现,需要做的是,明白各个函数的功能作用及输入输出,在脚本中完成函数的调用,给出要求的格式的结果。
from numpy import *
import csv
import random
random.seed(21860251)
def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec
def createVocabList(dataSet):
vocabSet = set([]) # create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) # union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet): # 对比词汇表和输入的所有单词
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec
def trainNB0(trainMatrix, trainCategory): # trainMatrix是文档矩阵 trainCategory是文档类别标签构成的向量
numTrainDocs = len(trainMatrix) # 文档矩阵的长度
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory) / float(numTrainDocs)
p0Num = ones(numWords) # 初始化概率
p1Num = ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num / p1Denom) # change to log()
p0Vect = log(p0Num / p0Denom) # change to log()
return p0Vect, p1Vect, pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) # element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def bagOfWords2VecMN(vocabList, inputSet): # 朴素贝叶斯词带模型
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1 # 加1
return returnVec
def testingNB():
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
def textParse(bigString): # input is big string, #output is word list
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
docList = []
classList = []
fullText = []
for i in range(1, 26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList) # create vocabulary
trainingSet = list(range(50))
testSet = [] # create test set 随机构建测试集
for i in range(10):
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del (trainingSet[randIndex])
trainMat = []
trainClasses = []
for docIndex in trainingSet: # train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
out = open('test_result.csv', 'w', newline='')
csv_write = csv.writer(out, dialect='excel')
csv_write.writerow(['testSet', 'predict_value', 'truth'])
errorCount = 0
for docIndex in testSet: # classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print("classification error", docList[docIndex])
test_result_list = [docIndex, classifyNB(array(wordVector), p0V, p1V, pSpam), classList[docIndex]]
csv_write.writerow(test_result_list) # 以覆盖方式来写入csv文件中
print('the error rate is: ', float(errorCount) / len(testSet))
# return vocabList,fullText
testSet | predict_value | truth |
9 | 0 | 0 |
34 | 1 | 1 |
3 | 1 | 0 |
31 | 1 | 0 |
10 | 1 | 1 |
42 | 1 | 1 |
18 | 1 | 1 |
21 | 0 | 0 |
36 | 1 | 1 |
14 | 1 | 1 |