Kaggle_tweet_emotion_bert_transformers

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import os
from tqdm import tqdm
import re
import inspect

import tensorflow as tf
from tensorflow import keras
# import tensorflow.keras.backend as K
from sklearn.model_selection import train_test_split
from nltk.corpus import stopwords
import nltk
import datetime
import transformers
from transformers import BertConfig,TFBertPreTrainedModel,BertTokenizer,TFBertMainLayer,TFBertModel



print("tf_version_ : ",tf.__version__)
print("transformers:",transformers.__version__)
tf_version_ :  2.0.0
transformers: 2.5.1
MAX_LENGTH = 36
BATCH_SIZE = 16

#Load data
path_home = r"/home/lowry/pro/kaggle_tweets/kaggle_tweets_emotion"
path_data = os.path.join(path_home,"data")
data_train = pd.read_csv(os.path.join(path_data,"train.csv"),encoding="utf-8")
data_test = pd.read_csv(os.path.join(path_data,"test.csv"),encoding="utf-8")
data_submit = pd.read_csv(os.path.join(path_data,"sample_submission.csv"),encoding="utf-8")

# data_clean
stopwords_english = stopwords.words("english")
# print(stopwords_english)
def cleanword(s):
    s = s.lower()
    temp = re.findall("http\S*",s)  
    for deletStr in temp:
        if deletStr != "":
            s = s.replace(deletStr," ")
    temp = re.findall("@\S*",s)
    for deletStr in temp:
        if deletStr != "":
            s = s.replace(deletStr," ")
    temp = re.findall("\d*",s)
    for deletStr in temp:
        if deletStr != "":
            s = s.replace(deletStr," ")
            
    temp = re.findall("\x89\S*",s)
    for deletStr in temp:
        if deletStr != "":
            s = s.replace(deletStr[:5]," ")

    s = s.replace("\n"," ")
    s = s.replace(","," ")
    s = s.replace(&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值