寻找最优模型---K折交叉验证


目录

1.概览

2.代码


1.概览

当我们要从多个模型中快速选择一个较为合适的模型时,也可以把数据依次放到每个模型中去测试,找到泛化能力较强的那一个。虽然这是一个「笨」办法,但在实验流程上也有一些取巧的步骤。其中之一,就是今天要介绍的 K 折交叉验证(k-fold cross-validation)。

其通过将数据集均分成 K 个子集,并依次将其中的 K-1 个子集作为训练集,剩下的 1 个子集用作测试集。在 K 折交叉验证的过程中,每个子集均会被验证一次。

 

 

2.代码

# -*- coding: utf-8 -*-
"""
Created on Thu Sep  6 19:54:24 2018

k折交叉验证
   数据:(鲍鱼)年龄数据集 challenge-6-abalone.csv
   http://labfile.oss.aliyuncs.com/courses/1081/challenge-6-abalone.csv
     数据说明:最后 1 列为目标列,统计了鲍鱼的环数(Rings),环数从 1-30 变化,值越大代表鲍鱼的年龄越大。
    
    
  方法:
      1.批量替换df.replace()    指定替换值
         df.Sex.replace({'M&#
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值