https://codeforces.com/contest/1092/problem/F
题意:
给你一棵无根树,每个节点有个权值ai,指定一个点u,定义value=∑ai∗dist(u,i),求出value最大值
思路:换根dp,首先考虑计算以根节点为U计算答案,首先通过一遍dfs直接求出res,然后思考一下如果变换u节点,u->to 那么to节点子树上dis-1,u节点其他子树dis+1,dis-1相当于res减去to节点子树ai的和(因为是每个减一),所以我们在第一遍dfs计算出每个子节点子树ai和num
换根过程:u->to
断开连接:num[u]-=num[to]减去子树大小 ,res-=num[to],减去子树贡献
连接u:num[to]+=num[u],加上u子树大小 ,res+=num[u],把u当做子树加上贡献
子节点遍历完毕,逆序还原即可
#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define fi first
#define se second
#define show(a) cout<<a<<endl;
#define show2(a,b) cout<<a<<" "<<b<<endl;
#define show3(a,b,c) cout<<a<<" "<<b<<" "<<c<<endl;
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
using namespace std;
typedef long long ll;
typedef pair<char, ll> P;
typedef pair<P, int> LP;
const int inf = 0x3f3f3f3f;
const int N = 1e6 + 100;
const int mod = 1e9+7;
const int base=131;
tr1::unordered_map<ll,ll> mp;
inline ll mul(ll x,ll y) { return (x*y-(ll)((long double)x*y/mod)*mod+mod)%mod;}
inline ll ksm(ll a,ll b) {ll ans=1;while(b){if(b&1)ans=mul(ans,a);a=mul(a,a),b>>=1;}return ans;}
int gcd(int x, int y) {
return y?gcd(y,x%y):x;
}
ll n,m;
ll num[N],vis[N],a[N];
ll k,ans,cnt,res;
vector<int> v[N];
void dfs(int x,int fa,int h)
{
res+=h*a[x];
num[x]+=a[x];
for(int to:v[x])
{
if(to==fa) continue;
dfs(to,x,h+1);
num[x]+=num[to];
}
}
void go(int x,int fa)
{
ans=max(res,ans);
for(int to:v[x])
{
if(to==fa) continue;
res-=num[to];
num[x]-=num[to];
res+=num[x];
num[to]+=num[x];
go(to,x);
num[to]-=num[x];
res-=num[x];
num[x]+=num[to];
res+=num[to];
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
v[x].push_back(y);
v[y].push_back(x);
}
dfs(1,-1,0);
go(1,-1);
cout<<ans<<endl;
}