以下是使用PyTorch进行CIFAR10数据集上ResNet图像分类的代码示例:
```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms
定义ResNet模型
class ResNet(nn.Module): def init(self, num_classes=10): super(ResNet, self).init() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.layer2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1,

该博客展示了如何用PyTorch编写ResNet模型,以对CIFAR10数据集进行图像分类。通过定义卷积层、批量归一化和激活函数,构建了ResNet网络,并最后连接全连接层进行分类。
最低0.47元/天 解锁文章
343

被折叠的 条评论
为什么被折叠?



