L2GD论文阅读笔记

摘要

《Federated Learning of a Mixture of Global and Local Models》这篇论文的目的是在Local和Global之间寻找一个trade off,对全局模型和局部模型进行混合,并提出适用于这一想法的几种新的梯度下降算法,如L2GD,该算法还能改进通信复杂度。

本文的两项动机

1、全局模型在客户端的实用性问题。
2、传统的LGD在理论上,并不能改善通信复杂度。

目标函数

在这里插入图片描述
其中f(x)是全局平均损失值,λ≥0是惩罚项参数, x 1 x_1 x1 x n x_n xn R d R^d Rd是本地模型,x:=( x 1 x_1 x1 x n x_n xn

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

联邦学习小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值