一、什么是GIL?
定义:
'''
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management is not thread-safe. (However, since the GIL
exists, other features have grown to depend on the guarantees that it enforces.)
'''
Python自带的解释器是CPython。CPython解释器的多线程实际上是一个假的多线程(在多核CPU中,只能利用一核,不能利用多核)。同一时刻只有一个线程在执行,为了保证同一时刻只有一个线程在执行,在CPython解释器中有一个东西叫做GIL(Global Intepreter Lock),叫做全局解释器锁。这个解释器锁是有必要的。因为CPython解释器的内存管理不是线程安全的。当然除了CPython解释器,还有其他的解释器,有些解释器是没有GIL锁的,见下面:
解释器 | 介绍 |
---|---|
Jython | 用Java实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/Jython |
IronPython | 用.net实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/IronPython |
PyPy | 用Python实现的Python解释器。存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/PyPy |
结论:
在Cpython 解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
这篇文章透彻的剖析了GIL对python多线程的影响,强烈推荐看一下:http://www.dabeaz.com/python/UnderstandingGIL.pdf
二、GIL工作原理
GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。
要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程。
'''
#验证python test.py只会产生一个进程
#GIL.py内容
import os,time
print(os.getpid())
time.sleep(1000)
'''
python3 GIL.py
#在windows下
tasklist |findstr python
#在linux下
ps aux |grep python
在一个python的进程内,不仅有GIL.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问
#1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启三个线程然后target都指向该代码,能访问到意味着就是可以执行。
#2 所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。
结论:
三、GIL与Lock的区别
GIL保护的是解释器级的数据,保护用户自己的数据则需要自己加锁处理,如下图
有了GIL,为什么还需要Lock:
GIL只是保证全局同一时刻只有一个线程在执行,但是他并不能保证执行代码的原子性。也就是说一个操作可能会被分成几个部分完成,这样就会导致数据有问题。所以需要使用Lock来保证操作的原子性。
四、GIL的特点
参考博文: Python并发编程之进程与线程(详解)
对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用 ,所以可以得到如下结论
#分析:
我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
方案一:开启四个进程
方案二:一个进程下,开启四个线程
#单核情况下,分析结果:
如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜
如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜
#多核情况下,分析结果:
如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜
如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜
结论:
现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。