图的数据结构(邻接表、邻接矩阵)

本文深入探讨了图的基本概念,包括无向边与有向边、简单图、图的分类,以及图的数据结构——邻接矩阵和邻接表。详细解析了不同类型的图和它们在实际应用中的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图的基本概念:
图是由边集E和点集V构成集合: G ( V , E ) G(V,E) G(V,E)
无向边: ( v i , v j ) (v_i,v_j) (vi,vj) ,有向边: < v i , v j > <v_i,v_j> <vi,vj>
逻辑关系:点之间的逻辑关系为邻接,邻接的点简称邻点。
简单图:一般只讨论简单图,所谓简单图就是没有自边(自身指向自身)也没有重复边,自边和重复边在计算机和现实中大多是没有意义的。
图的分类:对于图来说,常见的有三种分类方法:
边上是否加权:加权:网图/网,不加权:图
边是否有向:有向图、无向图
任意两点是否可达:连通图、非连通图
对于非连通图,不连通的子图称为连通分量,对于每个连通分量来说,本身必须是一个连通图。如下图:a图中有三个连通分量,每个连通分量就是一个连通图,如图b。
在这里插入图片描述

图的数据结构:
一般有两种数据结构:邻接矩阵和邻接表。
邻接矩阵:一般是一个二维数组vector<vector<type>> V, type为节点的数据类型。
无向图的邻接矩阵:一定是对称矩阵,非网图中, V [ i ] [ j ] = 0 , 1 V[i][j]=0,1 V[i][j]=0,1表示边 e i j e_{ij} eij是否存在,网图中, V [ i ] [ j ] V[i][j] V[i][j]表示边 e i j e_{ij} eij的权重,无边则用0或者 ∞ ∞ 表示,如下图:
图
在这里插入图片描述
有向图的邻接矩阵:一般不对称
在这里插入图片描述
在这里插入图片描述

邻接表:每个点都设置一个邻点向量/链表。
即< v i v_{i} vi,vector<type>>,type为点的数据类型。如果是网图,type改成二元字典map<type,int>, 即< v i v_{i} vi,vector<map<type,int>>>
一般用向量保存各点的邻点,链表不易随机存取。
如上面两个有向图的邻接表分别为:
在这里插入图片描述
我更偏爱用邻接表保存图的信息,一是不容易搞错(点和邻点的一 一对应关系),二是对于稀疏图来说,邻接表更省空间,遍历时也更省时间!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP饶了我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值