python/Tensorflow 学习笔记 陆续追加...

本文探讨了在使用BatchNorm时保持训练与测试batch大小一致的重要性,以避免精度误差。此外,还介绍了如何利用UTF-8编码正确处理包含法语字符的文本文件。

1.当使用batch_norm时, 训练batch_size与测试batch_size应当保持一致, 不然会带来精度误差, 因为batch_size是在每一个batch内进行的;

2. python 读取字符遇到法语字符的处理方式,需要利用utf8编码,如下:

import codecs
with codecs.open(r'C:\Users\chsafouane\Desktop\saf.txt', encoding='utf8') as f:
    for line in f.readlines():
        line 
@@ [17:26:42][INFO]<quantize model fp16 cmd>: python3 -m dl quantize 1_handle.onnx.rlym --downcast --output-model 1_handle.onnx.fp16.rlym Traceback (most recent call last): File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/dl/sdk/python/tvm/dl/python/dl/__main__.py", line 7, in <module> main() File "/dl/sdk/python/tvm/dl/python/dl/main.py", line 72, in main sys.exit(_main(sys.argv[1:])) File "/dl/sdk/python/tvm/dl/python/dl/main.py", line 68, in _main return args.func(args) File "/dl/sdk/python/tvm/dl/python/dl/driver/quantize.py", line 150, in drive_quantize from dl.quantize.quantize import quantize, qconfig File "/dl/sdk/python/tvm/dl/python/dl/quantize/quantize.py", line 49, in <module> from dl.quantize.analysis import ( File "/dl/sdk/python/tvm/dl/python/dl/quantize/analysis.py", line 16, in <module> from dl.quantize.quantization_lib import calibration File "/dl/sdk/python/tvm/dl/python/dl/quantize/quantization_lib.py", line 3, in <module> import tensorflow as tf File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/__init__.py", line 37, in <module> from tensorflow.python.tools import module_util as _module_util File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/__init__.py", line 45, in <module> from tensorflow.python.feature_column import feature_column_lib as feature_column File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/feature_column/feature_column_lib.py", line 18, in <module> from tensorflow.python.feature_column.feature_column import * File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/feature_column/feature_column.py", line 143, in <module> from tensorflow.python.layers import base File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/layers/base.py", line 16, in <module> from tensorflow.python.keras.legacy_tf_layers import base File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/keras/__init__.py", line 25, in <module> from tensorflow.python.keras import models File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/keras/models.py", line 22, in <module> from tensorflow.python.keras.engine import functional File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/keras/engine/functional.py", line 32, in <module> from tensorflow.python.keras.engine import training as training_lib File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 54, in <module> from tensorflow.python.keras.saving import hdf5_format ImportError: cannot import name 'hdf5_format' from 'tensorflow.python.keras.saving' (/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/site-packages/tensorflow/python/keras/saving/__init__.py) @@ [17:26:52][INFO]<nne execute>: static build [NNE]python3 -m dl convert --optimize 1_handle.onnx.fp16.rlym --output-model /tmp/.330450//temp_i9x3MV.rlym --outputs "output onnx::Sigmoid_741 onnx::Sigmoid_927 onnx::Sigmoid_1111 " load dlnne_plugin.so && libdlnne_tvm_plugin.so success Traceback (most recent call last): File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/tfjz_auto/miniconda3/envs/TFDS_ARM/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/dl/sdk/python/tvm/dl/python/dl/__main__.py", line 7, in <module> main() File "/dl/sdk/python/tvm/dl/python/dl/main.py", line 72, in main sys.exit(_main(sys.argv[1:])) File "/dl/sdk/python/tvm/dl/python/dl/main.py", line 68, in _main return args.func(args) File "/dl/sdk/python/tvm/dl/python/dl/driver/convert.py", line 231, in drive_convert tvmc_model = load_model(model, shape_dict=args.input_shapes, **kwargs) File "/dl/sdk/python/tvm/python/tvm/driver/tvmc/frontends.py", line 412, in load_model mod, params = frontend.load(path, shape_dict, **kwargs) File "/dl/sdk/python/tvm/dl/python/dl/relay/frontend/frontends.py", line 185, in load assert os.path.exists(path), "{} doesn't exist".format(path) AssertionError: 1_handle.onnx.fp16.rlym doesn't exist terminate called after throwing an instance of 'std::logic_error' what(): basic_string::_M_construct null not valid
08-01
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值