【Deep Learning 三】神经网络中的非线性激活函数之间的优缺点:sigmoid、tanh、ReLu、Leaky ReLu...

本文深入探讨激活函数在神经网络中的作用,包括sigmoid、tanh、ReLU等常见类型,以及它们的优缺点对比。揭示了激活函数如何引入非线性因素,增强网络表达能力,特别强调ReLU在卷积神经网络中的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 什么是激活函数?

激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键。

目前知道的激活函数有如下几个:sigmoid,tanh,ReLu,softmax。 

simoid函数也称S曲线:f(x)=11+e−x

tanh:f(x)=tanh(x)

ReLU:f(x)=max(x,0)

softmax:f(x)=log(1+exp(x))

2 神经网络中为什么要使用激活函数?

 

  • 激活函数是用来加入非线性因素的,因为线性模型的表达力不够

 

这句话字面的意思很容易理解,但是在具体处理图像的时候是什么情况呢?我们知道在神经网络中,对于图像,我们主要采用了卷积的方式来处理,也就是对每个像素点赋予一个权值,这个操作显然就是线性的。但是对于我们样本来说,不一定是线性可分的,为了解决这个问题,我们可以进行线性变化,或者我们引入非线性因素,解决线性模型所不能解决的问题。

这里插一句,来比较一下上面的那些激活函数,因为神经网络的数学基础是处处可微的,所以选取的激活函数要能保证数据输入与输出也是可微的,运算特征是不断进行循环计算,所以在每代循环过程中,每个神经元的值也是在不断变化的。

这就导致了tanh特征相差明显时的效果会很好,在循环过程中会不断扩大特征效果显示出来,但有是,在特征相差比较复杂或是相差不是特别大时,需要更细微的分类判断的时候,sigmoid效果就好了。

还有一个东西要注意,sigmoid 和 tanh作为激活函数的话,一定要注意一定要对 input 进行归一话,否则激活后的值都会进入平坦区,使隐层的输出全部趋同,但是 ReLU 并不需要输入归一化来防止它们达到饱和。

  • 构建稀疏矩阵,也就是稀疏性,这个特性可以去除数据中的冗余,最大可能保留数据的特征,也就是大多数为0的稀疏矩阵来表示。

其实这个特性主要是对于Relu,它就是取的max(0,x),因为神经网络是不断反复计算,实际上变成了它在尝试不断试探如何用一个大多数为0的矩阵来尝试表达数据特征,结果因为稀疏特性的存在,反而这种方法变得运算得又快效果又好了。

所以我们可以看到目前大部分的卷积神经网络中,基本上都是采用了ReLU 函数。

 

摘自:http://blog.youkuaiyun.com/huahuazhu/article/details/74188288

常见的 4 种激活函数(σ、tanh、ReLU、Leaky ReLU):

4 种激活函数的优缺点:
σ: 优点:适合二元分类,因为预测值在[0,1]之间,比如在输出层使用;缺点:当z很大,梯度接近0,下降速度缓慢。
tanh: 比σ要好,因为预测值在[-1,1]之间,可以使均值为0,比如在隐藏层使用;缺点:当z很大,梯度接近0,下降速度缓慢。
ReLU(修正线性单元): 优点:当z很大,梯度为1,下降速度很快,最常用的激活函数;缺点:z有一半梯度为0。
Leaky ReLU(带泄露的修正线性单元): 优点:解决了ReLU的有一半梯度为0的问题;缺点:需要调参来找到一个好的缓慢下降的参数,不常用。
 


神经网络中如果不加入激活函数,其一定程度可以看成线性表达,最后的表达能力不好,如果加入一些非线性的激活函数,整个网络中就引入了非线性部分,增加了网络的表达能力。目前比较流行的激活函数主要分为以下7种:

这里写图片描述

1.sigmoid

这里写图片描述

这里写图片描述

2.tanh

这里写图片描述

3.ReLu

这里写图片描述

4.Leaky ReLu

这里写图片描述

5.PReLu

这里写图片描述

6.RReLu

这里写图片描述

7 Maxout

这里写图片描述

<think>好的,我现在需要帮助用户在MATLAB中绘制sigmoidtanhReLULeakyReLU激活函数的图像。首先,我得回忆一下这些激活函数的数学表达式,然后考虑如何在MATLAB中实现它们。 首先,用户提到了四个激活函数sigmoidtanhReLULeakyReLU。我需要逐一确认每个函数的定义。比如,sigmoid函数通常是$f(x) = \frac{1}{1 + e^{-x}}$,tanh是双曲正切函数,表达式为$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$,或者也可以用双曲函数库里的函数。ReLU比较简单,就是$f(x) = \max(0, x)$,而LeakyReLU则是当x小于0时,乘以一个小的斜率,比如0.01,所以表达式是$f(x) = \begin{cases} x & \text{if } x \geq 0 \\ 0.01x & \text{otherwise} \end{cases}$。 接下来,考虑如何在MATLAB中实现这些函数。对于sigmoid,可能需要用元素级运算,比如用exp函数计算指数。同样,tanh在MATLAB中可能有内置函数,但为了准确起见,可能需要手动实现或者调用正确的函数。ReLULeakyReLU可以用条件判断,或者更高效的方式,比如逐元素比较。 然后,关于绘图部分。用户希望将这四个函数绘制出来。在MATLAB中,通常需要生成一个x值的向量,然后计算对应的y值,再使用plot函数绘制。可能需要设置不同的颜色和线条样式来区分各个激活函数。同时,添加网格、标签、标题和图例也是必要的步骤,以便图像更清晰。 需要注意的几点:首先,生成x的范围,比如从-5到5,步长0.1,这样可以覆盖函数的典型变化区域。其次,处理每个函数时,确保数组运算正确,避免维度错误。例如,sigmoid函数中的指数运算应该是对每个元素进行操作,而不是矩阵运算。可能需要使用点运算符(如.*和.^)来确保按元素计算。 对于LeakyReLU,可能需要使用逻辑索引来处理x中大于等于0和小于0的部分。例如,在MATLAB中,可以这样实现:y = x .* (x >= 0) + 0.01 * x .* (x < 0)。或者使用max函数结合不同的条件。 另外,用户提到在Python中使用detach()来切断计算图,但在MATLAB中不需要处理张量计算图的问题,因为MATLAB主要用于数值计算而不是深度学习框架中的自动微分。因此,这部分可以忽略,直接处理普通的数值数组即可。 接下来,需要整合这些步骤到一个MATLAB脚本中。可能需要分几个子图,或者在同一图中用不同颜色绘制,但考虑到四个函数放在同一图中可能比较拥挤,所以分四个子图更合适,每个子图显示一个函数。 然后,检查代码的正确性。例如,sigmoid函数是否计算正确,tanh是否有内置函数或者是否需要手动实现。在MATLAB中,tanh函数是内置的,可以直接使用。ReLU可以用max函数,LeakyReLU可能需要逻辑索引。 最后,确保图像的展示效果良好,包括坐标轴标签、标题、图例、网格线等。可能需要使用hold on来在同一图中绘制多个函数,但如果是分四个子图的话,每个子图独立显示一个函数更清晰。 现在,我需要将上述思考转化为具体的MATLAB代码步骤,并确保每个激活函数的正确性,以及绘图的正确设置。同时,需要按照用户的要求,使用中文回答,并生成相关问题。最后,根据用户提供的引用,检查是否有需要引用的地方,比如激活函数的定义或绘图方法是否来自参考内容。但用户提供的引用主要是关于Python的实现,而这里的问题是关于MATLAB的,因此可能引用部分不适用,但需要确认是否有相关内容需要标注。</think>### 分步实现方法 1. **定义输入范围** 生成从$-5$到$5$的连续输入值,步长$0.1$,用于绘制平滑曲线: ```matlab x = -5:0.1:5; ``` 2. **定义激活函数** - **Sigmoid**: $$f(x) = \frac{1}{1 + e^{-x}}$$ ```matlab sigmoid = 1 ./ (1 + exp(-x)); ``` - **Tanh**: $$f(x) = \tanh(x)$$(直接使用MATLAB内置函数) ```matlab tanh_y = tanh(x); ``` - **ReLU**: $$f(x) = \max(0, x)$$ ```matlab relu = max(0, x); ``` - **LeakyReLU**: $$f(x) = \begin{cases} x & x \geq 0 \\ 0.01x & x < 0 \end{cases}$$ ```matlab leakyrelu = x .* (x >= 0) + 0.01 * x .* (x < 0); ``` 3. **绘制图像** 使用`subplot`将四个函数绘制在同一窗口的不同子图中: ```matlab figure; % Sigmoid subplot(2,2,1); plot(x, sigmoid, 'b', 'LineWidth', 2); title('Sigmoid'); grid on; % Tanh subplot(2,2,2); plot(x, tanh_y, 'r', 'LineWidth', 2); title('Tanh'); grid on; % ReLU subplot(2,2,3); plot(x, relu, 'g', 'LineWidth', 2); title('ReLU'); grid on; % LeakyReLU subplot(2,2,4); plot(x, leakyrelu, 'm', 'LineWidth', 2); title('LeakyReLU'); grid on; ``` ### 完整代码 ```matlab x = -5:0.1:5; % Sigmoid sigmoid = 1 ./ (1 + exp(-x)); % Tanh tanh_y = tanh(x); % ReLU relu = max(0, x); % LeakyReLU leakyrelu = x .* (x >= 0) + 0.01 * x .* (x < 0); % 绘图 figure; subplot(2,2,1); plot(x, sigmoid, 'b', 'LineWidth', 2); title('Sigmoid'); grid on; subplot(2,2,2); plot(x, tanh_y, 'r', 'LineWidth', 2); title('Tanh'); grid on; subplot(2,2,3); plot(x, relu, 'g', 'LineWidth', 2); title('ReLU'); grid on; subplot(2,2,4); plot(x, leakyrelu, 'm', 'LineWidth', 2); title('LeakyReLU'); grid on; ``` ### 效果说明 - **Sigmoid** 输出范围$(0,1)$,适用于概率映射[^1]。 - **Tanh** 输出范围$(-1,1)$,中心对称性有助于收敛[^2]。 - **ReLU** 在$x>0$时线性增长,避免梯度消失。 - **LeakyReLU** 改进ReLU的“神经元死亡”问题,允许负值区域有微小梯度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值