之前一直没有空整理有关 “人脸识别” 的基础知识,现在得幸做个PPT,这里有PPT的下载地址,我已经上传了喔
ps:ppt不见了。。有机会再搞吧。。。
主要好记性不如烂笔头嘛,在上面写了一些我的思路以及理解吧,话不多说,立刻开始来介绍一下主要做的内容:
人脸识别的原理~
0)人脸识别的应用场景;
1)图形预处理:灰度化、几何变换、图像增强,归一化。
对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
2)图像检测:特征点定位、人脸对齐、仿射变换来抓取人脸特征点,用到了opencv的dlib库;
人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提