快速幂运算模板

原理:

假设要求x^n,如果n = 2^k,那么原题可以很轻松的表示为:x^n = ((x^2)^2)^2…。这样只要做k次平方

运算就能解决,时间复杂度就从O(n)下降到log(n)。

 

普通版:

typedef long long ll; 
ll mod_pow(ll x, ll n, ll mod){
    ll res = 1;
    while( n > 0 ){ 
        if( n & 1 ) res = res * x % mod;    //n&1其实在这里和 n%2表达的是一个意思
        x = x * x % mod;
        n >>= 1;    //n >>= 1这个和 n/=2表达的是一个意思
    }
    return res;
}
 

递归版:

typedef long long ll;
ll mod_pow(ll x, ll n, ll mod){
    if( n == 0 ) return 1;
    ll res = mod_pow( x * x % mod, n / 2, mod );
    if( n & 1 ) res = res * x % mod;
    return res;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值