生活-莫生气

1.莫生气
人生就像一场戏,因为有缘才相聚。
相扶到老不容易,是否更该去珍惜。
为了小事发脾气,回头想想又何必。
别人生气我不气,气出病来无人替。
我若生气谁如意,况且伤神又费力。
邻居亲朋不要比,儿孙琐事由他去。
吃苦享乐在一起,神仙羡慕好伴侣。

2.莫烦恼

人生百年古来稀,帝王此关也难免。
金山银山有虽好,转眼也就全没了。
争名夺利真俗气,逞强好胜终恶报。
红尘俗事再热闹,还是匆匆走一回。
世间道理既明白,莫怨岁月摧人老。
尔观尘世什是好,友情亲情最可靠。
心平气和走正道,先爱自己莫烦恼。

3.生活爱好

一位小女孩为小提琴🎻考级未过而沮丧!
她爸爸一席话感动无数人:
“爸爸当年给你报这个小提琴班,不是为了让你过级。
爸爸就是希望有一天你长大了,爸爸不在你身边,你觉得不开心了,把琴箱打开,帮自己拉一曲。
那个熟悉的音乐响起来,环绕着你,就好像爸爸还在你身边一样。
我就希望你有一个这样的爱好,能在你最需要的时刻陪伴着你。”

检查代码是否合理是否错误,并评价代码,计算运行峰值、准确率、效率速度,已两人对话十分钟为例。 import os import sys import re import json import gc import time import concurrent.futures import traceback import numpy as np import librosa import torch import psutil from typing import List, Dict, Tuple, Optional from threading import RLock, Semaphore from pydub import AudioSegment from pydub.silence import split_on_silence from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from transformers import AutoModelForSequenceClassification, AutoTokenizer from torch.utils.data import TensorDataset, DataLoader from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton, QLabel, QLineEdit, QTextEdit, QFileDialog, QProgressBar, QGroupBox, QMessageBox, QListWidget, QSplitter, QTabWidget, QTableWidget, QTableWidgetItem, QHeaderView, QAction, QMenu, QToolBar, QComboBox, QSpinBox, QDialog, QDialogButtonBox) from PyQt5.QtCore import QThread, pyqtSignal, Qt from PyQt5.QtGui import QFont, QColor, QIcon # ====================== 资源监控器 ====================== class ResourceMonitor: def __init__(self): self.gpu_available = torch.cuda.is_available() def memory_percent(self) -> Dict[str, float]: try: result = {"cpu": psutil.virtual_memory().percent} if self.gpu_available: allocated = torch.cuda.memory_allocated() / (1024 ** 3) total = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) result["gpu"] = (allocated / total) * 100 if total > 0 else 0 return result except Exception as e: print(f"内存监控失败: {str(e)}") return {"cpu": 0, "gpu": 0} # ====================== 方言处理器(简化版) ====================== class DialectProcessor: # 合并贵州方言和普通话关键词 KEYWORDS = { "opening": ["您好", "很高兴为您服务", "请问有什么可以帮您", "麻烦您喽", "请问搞哪样", "有咋个可以帮您", "多谢喽"], "closing": ["感谢来电", "祝您生活愉快", "再见", "搞归一喽", "麻烦您喽", "再见喽", "慢走喽"], "forbidden": ["知道", "没办法", "你投诉吧", "随便你", "搞成", "没得法", "随便你喽", "你投诉吧喽"], "salutation": ["先生", "女士", "小姐", "老师", "师傅", "哥", "姐", "兄弟", "妹儿"], "reassurance": ["非常抱歉", "请要着急", "我们会尽快处理", "理解您的心情", "实在对住", "莫急哈", "马上帮您整", "理解您得很"] } # 贵州方言到普通话的固定映射 DIALECT_MAPPING = { "恼火得很": "非常生气", "鬼火戳": "很愤怒", "搞成": "无法完成", "没得": "没有", "搞哪样嘛": "做什么呢", "归一喽": "完成了", "咋个": "怎么", "克哪点": "去哪里", "麻烦您喽": "麻烦您了", "多谢喽": "多谢了", "憨包": "傻瓜", "归一": "结束", "板扎": "很好", "鬼火冒": "非常生气", "背时": "倒霉", "吃豁皮": "占便宜" } # Trie树根节点 _trie_root = None class TrieNode: def __init__(self): self.children = {} self.is_end = False self.value = "" @classmethod def build_dialect_trie(cls): """构建方言转换的Trie树""" if cls._trie_root is not None: return cls._trie_root root = cls.TrieNode() # 按长度降序排序,确保最长匹配优先 for dialect, standard in sorted(cls.DIALECT_MAPPING.items(), key=lambda x: len(x[0]), reverse=True): node = root for char in dialect: if char not in node.children: node.children[char] = cls.TrieNode() node = node.children[char] node.is_end = True node.value = standard cls._trie_root = root return root @classmethod def preprocess_text(cls, texts: List[str]) -> List[str]: """使用Trie树进行方言转换""" if cls._trie_root is None: cls.build_dialect_trie() processed_texts = [] for text in texts: processed = [] i = 0 n = len(text) while i < n: node = cls._trie_root j = i found = False # 在Trie树中查找最长匹配 while j < n and text[j] in node.children: node = node.children[text[j]] j += 1 if node.is_end: # 找到完整匹配 processed.append(node.value) i = j found = True break if not found: # 无匹配 processed.append(text[i]) i += 1 processed_texts.append(''.join(processed)) return processed_texts # ====================== 系统配置管理器 ====================== class ConfigManager: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance._init_config() return cls._instance def _init_config(self): self.config = { "model_paths": { "asr": "./models/iic-speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn", "sentiment": "./models/IDEA-CCNL-Erlangshen-Roberta-110M-Sentiment" }, "sample_rate": 16000, "silence_thresh": -40, "min_silence_len": 1000, "max_concurrent": 1, "max_audio_duration": 3600 # 移除了方言配置 } self.load_config() def load_config(self): try: if os.path.exists("config.json"): with open("config.json", "r") as f: self.config.update(json.load(f)) except: pass def save_config(self): try: with open("config.json", "w") as f: json.dump(self.config, f, indent=2) except: pass def get(self, key: str, default=None): return self.config.get(key, default) def set(self, key: str, value): self.config[key] = value self.save_config() # ====================== 音频处理工具 ====================== class AudioProcessor: SUPPORTED_FORMATS = ('.mp3', '.wav', '.amr', '.m4a') @staticmethod def convert_to_wav(input_path: str, temp_dir: str) -> Optional[List[str]]: try: os.makedirs(temp_dir, exist_ok=True) if not any(input_path.lower().endswith(ext) for ext in AudioProcessor.SUPPORTED_FORMATS): raise ValueError(f"支持的音频格式: {os.path.splitext(input_path)[1]}") if input_path.lower().endswith('.wav'): return [input_path] audio = AudioSegment.from_file(input_path) max_duration = ConfigManager().get("max_audio_duration", 3600) * 1000 if len(audio) > max_duration: return AudioProcessor._split_long_audio(audio, input_path, temp_dir) return AudioProcessor._convert_single_audio(audio, input_path, temp_dir) except Exception as e: print(f"格式转换失败: {str(e)}") return None @staticmethod def _split_long_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]: chunks = split_on_silence( audio, min_silence_len=ConfigManager().get("min_silence_len", 1000), silence_thresh=ConfigManager().get("silence_thresh", -40), keep_silence=500 ) merged_chunks = [] current_chunk = AudioSegment.empty() for chunk in chunks: if len(current_chunk) + len(chunk) < 5 * 60 * 1000: current_chunk += chunk else: if len(current_chunk) > 0: merged_chunks.append(current_chunk) current_chunk = chunk if len(current_chunk) > 0: merged_chunks.append(current_chunk) wav_paths = [] sample_rate = ConfigManager().get("sample_rate", 16000) for i, chunk in enumerate(merged_chunks): chunk = chunk.set_frame_rate(sample_rate).set_channels(1) chunk_path = os.path.join(temp_dir, f"{os.path.splitext(os.path.basename(input_path))[0]}_part{i + 1}.wav") chunk.export(chunk_path, format="wav") wav_paths.append(chunk_path) return wav_paths @staticmethod def _convert_single_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]: sample_rate = ConfigManager().get("sample_rate", 16000) audio = audio.set_frame_rate(sample_rate).set_channels(1) wav_path = os.path.join(temp_dir, os.path.splitext(os.path.basename(input_path))[0] + ".wav") audio.export(wav_path, format="wav") return [wav_path] @staticmethod def extract_features_from_audio(y: np.ndarray, sr: int) -> Dict[str, float]: try: duration = librosa.get_duration(y=y, sr=sr) segment_length = 60 total_segments = max(1, int(np.ceil(duration / segment_length))) syllable_rates, volume_stabilities = [], [] total_samples = len(y) samples_per_segment = int(segment_length * sr) for i in range(total_segments): start = i * samples_per_segment end = min((i + 1) * samples_per_segment, total_samples) y_segment = y[start:end] if len(y_segment) == 0: continue intervals = librosa.effects.split(y_segment, top_db=20) speech_samples = sum(end - start for start, end in intervals) speech_duration = speech_samples / sr syllable_rates.append(len(intervals) / speech_duration if speech_duration > 0.1 else 0) rms = librosa.feature.rms(y=y_segment, frame_length=2048, hop_length=512)[0] if len(rms) > 0 and np.mean(rms) > 0: volume_stabilities.append(np.std(rms) / np.mean(rms)) return { "duration": duration, "syllable_rate": round(np.mean([r for r in syllable_rates if r > 0]) if syllable_rates else 0, 2), "volume_stability": round(np.mean(volume_stabilities) if volume_stabilities else 0, 4) } except Exception as e: print(f"特征提取错误: {str(e)}") return {"duration": 0, "syllable_rate": 0, "volume_stability": 0} # ====================== 模型加载器 ====================== class ModelLoader: asr_pipeline = None sentiment_model = None sentiment_tokenizer = None model_lock = RLock() models_loaded = False @classmethod def load_models(cls): config = ConfigManager() if not cls.asr_pipeline: with cls.model_lock: if not cls.asr_pipeline: cls._load_asr_model(config.get("model_paths")["asr"]) if not cls.sentiment_model: with cls.model_lock: if not cls.sentiment_model: cls._load_sentiment_model(config.get("model_paths")["sentiment"]) cls.models_loaded = True @classmethod def reload_models(cls): with cls.model_lock: cls.asr_pipeline = None cls.sentiment_model = None cls.sentiment_tokenizer = None gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() cls.load_models() @classmethod def _load_asr_model(cls, model_path: str): try: if not os.path.exists(model_path): raise FileNotFoundError(f"ASR模型路径存在: {model_path}") asr_kwargs = {'quantize': 'int8'} if hasattr(torch, 'quantization') else {} cls.asr_pipeline = pipeline( task=Tasks.auto_speech_recognition, model=model_path, device='cuda' if torch.cuda.is_available() else 'cpu', **asr_kwargs ) except Exception as e: print(f"加载ASR模型失败: {str(e)}") raise @classmethod def _load_sentiment_model(cls, model_path: str): try: if not os.path.exists(model_path): raise FileNotFoundError(f"情感分析模型路径存在: {model_path}") cls.sentiment_model = AutoModelForSequenceClassification.from_pretrained(model_path) cls.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_path) if torch.cuda.is_available(): cls.sentiment_model = cls.sentiment_model.cuda() except Exception as e: print(f"加载情感分析模型失败: {str(e)}") raise # ====================== 核心分析线程(简化版) ====================== class AnalysisThread(QThread): progress_updated = pyqtSignal(int, str, str) result_ready = pyqtSignal(dict) finished_all = pyqtSignal() error_occurred = pyqtSignal(str, str) memory_warning = pyqtSignal() resource_cleanup = pyqtSignal() def __init__(self, audio_paths: List[str], temp_dir: str = "temp_wav"): super().__init__() self.audio_paths = audio_paths self.temp_dir = temp_dir self.is_running = True self.current_file = "" self.max_concurrent = min(ConfigManager().get("max_concurrent", 1), self._get_max_concurrent_tasks()) self.resource_monitor = ResourceMonitor() self.semaphore = Semaphore(self.max_concurrent) os.makedirs(temp_dir, exist_ok=True) def run(self): try: if not ModelLoader.models_loaded: self.error_occurred.emit("模型未加载", "请等待模型加载完成后再开始分析") return self.progress_updated.emit(0, f"最大并行任务数: {self.max_concurrent}", "") with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_concurrent) as executor: future_to_path = {} for path in self.audio_paths: if not self.is_running: break self.semaphore.acquire() future = executor.submit(self.analyze_audio, path, self._get_available_batch_size()) future_to_path[future] = path future.add_done_callback(lambda f: self.semaphore.release()) for i, future in enumerate(concurrent.futures.as_completed(future_to_path)): if not self.is_running: break path = future_to_path[future] self.current_file = os.path.basename(path) if self._check_memory_usage(): self.memory_warning.emit() self.is_running = False break try: result = future.result() if result: self.result_ready.emit(result) progress = int((i + 1) / len(self.audio_paths) * 100) self.progress_updated.emit(progress, f"完成: {self.current_file} ({i + 1}/{len(self.audio_paths)})", self.current_file) except Exception as e: result = {"file_name": self.current_file, "status": "error", "error": f"分析失败: {str(e)}"} self.result_ready.emit(result) if self.is_running: self.finished_all.emit() except Exception as e: self.error_occurred.emit("系统错误", str(e)) traceback.print_exc() finally: self.resource_cleanup.emit() self._cleanup_resources() def analyze_audio(self, audio_path: str, batch_size: int) -> Dict: result = {"file_name": os.path.basename(audio_path), "status": "processing"} wav_paths = [] try: wav_paths = AudioProcessor.convert_to_wav(audio_path, self.temp_dir) if not wav_paths: result["error"] = "格式转换失败" result["status"] = "error" return result audio_features = self._extract_audio_features(wav_paths) result.update(audio_features) result["duration_str"] = self._format_duration(audio_features["duration"]) all_segments, full_text = self._process_asr_segments(wav_paths) agent_segments, customer_segments = self._identify_speakers(all_segments) result["asr_text"] = self._generate_labeled_text(all_segments, agent_segments, customer_segments).strip() text_analysis = self._analyze_text(agent_segments, customer_segments, batch_size) result.update(text_analysis) service_check = self._check_service_rules(agent_segments) result.update(service_check) result["issue_resolved"] = self._check_issue_resolution(customer_segments, agent_segments) result["status"] = "success" except Exception as e: result["error"] = f"分析失败: {str(e)}" result["status"] = "error" finally: self._cleanup_temp_files(wav_paths) self._cleanup_resources() return result def _identify_speakers(self, segments: List[Dict]) -> Tuple[List[Dict], List[Dict]]: """使用四层逻辑识别客服""" if not segments: return [], [] # 逻辑1:前三片段开场白关键词 agent_id = self._identify_by_opening(segments) # 逻辑2:后三片段结束语关键词 if agent_id is None: agent_id = self._identify_by_closing(segments) # 逻辑3:称呼与敬语关键词 if agent_id is None: agent_id = self._identify_by_salutation(segments) # 逻辑4:安抚语关键词 if agent_id is None: agent_id = self._identify_by_reassurance(segments) # 后备策略:说话模式识别 if agent_id is None and len(segments) >= 4: agent_id = self._identify_by_speech_patterns(segments) if agent_id is None: # 最后手段:选择说话最多的说话人 spk_counts = {} for seg in segments: spk_id = seg["spk_id"] spk_counts[spk_id] = spk_counts.get(spk_id, 0) + 1 agent_id = max(spk_counts, key=spk_counts.get) if spk_counts else None if agent_id is None: return [], [] return ( [seg for seg in segments if seg["spk_id"] == agent_id], [seg for seg in segments if seg["spk_id"] != agent_id] ) def _identify_by_opening(self, segments: List[Dict]) -> Optional[str]: """逻辑1:前三片段开场白关键词""" keywords = DialectProcessor.KEYWORDS["opening"] for seg in segments[:3]: if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_closing(self, segments: List[Dict]) -> Optional[str]: """逻辑2:后三片段结束语关键词""" keywords = DialectProcessor.KEYWORDS["closing"] last_segments = segments[-3:] if len(segments) >= 3 else segments for seg in reversed(last_segments): if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_salutation(self, segments: List[Dict]) -> Optional[str]: """逻辑3:称呼与敬语关键词""" keywords = DialectProcessor.KEYWORDS["salutation"] for seg in segments: if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_reassurance(self, segments: List[Dict]) -> Optional[str]: """逻辑4:安抚语关键词""" keywords = DialectProcessor.KEYWORDS["reassurance"] for seg in segments: if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_speech_patterns(self, segments: List[Dict]) -> Optional[str]: """后备策略:说话模式识别""" speaker_features = {} for seg in segments: spk_id = seg["spk_id"] if spk_id not in speaker_features: speaker_features[spk_id] = {"total_duration": 0.0, "turn_count": 0, "question_count": 0} features = speaker_features[spk_id] features["total_duration"] += (seg["end"] - seg["start"]) features["turn_count"] += 1 if any(q_word in seg["text"] for q_word in ["吗", "呢", "?", "?", "如何", "怎样"]): features["question_count"] += 1 if speaker_features: max_duration = max(f["total_duration"] for f in speaker_features.values()) question_rates = {spk_id: f["question_count"] / f["turn_count"] for spk_id, f in speaker_features.items()} candidates = [] for spk_id, features in speaker_features.items(): score = (0.6 * (features["total_duration"] / max_duration) + 0.4 * question_rates[spk_id]) candidates.append((spk_id, score)) return max(candidates, key=lambda x: x[1])[0] return None def _analyze_text(self, agent_segments: List[Dict], customer_segments: List[Dict], batch_size: int) -> Dict: """优化情感分析方法""" def split_long_sentences(texts: List[str]) -> List[str]: splitted = [] for text in texts: if len(text) > 128: parts = re.split(r'(?<=[。!?;,])', text) current = "" for part in parts: if len(current) + len(part) < 128: current += part else: if current: splitted.append(current) current = part if current: splitted.append(current) else: splitted.append(text) return splitted def enhance_with_keywords(texts: List[str]) -> List[str]: enhanced = [] emotion_keywords = { "positive": ["满意", "高兴", "感谢", "专业", "解决", "帮助", "谢谢", "很好", "错"], "negative": ["生气", "愤怒", "满", "投诉", "问题", "失望", "差劲", "糟糕", "投诉"], "neutral": ["了解", "明白", "知道", "确认", "查询", "记录", "需要", "提供"] } for text in texts: found_emotion = None for emotion, keywords in emotion_keywords.items(): if any(kw in text for kw in keywords): found_emotion = emotion break if found_emotion: enhanced.append(f"[{found_emotion}] {text}") else: enhanced.append(text) return enhanced # 分析单个说话者 def analyze_speaker(segments: List[Dict], speaker_type: str) -> Dict: if not segments: return { f"{speaker_type}_negative": 0.0, f"{speaker_type}_neutral": 1.0, f"{speaker_type}_positive": 0.0, f"{speaker_type}_emotions": "无" } texts = [seg["text"] for seg in segments] processed_texts = DialectProcessor.preprocess_text(texts) splitted_texts = split_long_sentences(processed_texts) enhanced_texts = enhance_with_keywords(splitted_texts) with ModelLoader.model_lock: inputs = ModelLoader.sentiment_tokenizer( enhanced_texts, padding=True, truncation=True, max_length=128, return_tensors="pt" ) dataset = TensorDataset(inputs['input_ids'], inputs['attention_mask']) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) device = "cuda" if torch.cuda.is_available() else "cpu" sentiment_dist = [] emotions = [] for batch in dataloader: input_ids, attention_mask = batch inputs = {'input_ids': input_ids.to(device), 'attention_mask': attention_mask.to(device)} with torch.no_grad(): outputs = ModelLoader.sentiment_model(**inputs) batch_probs = torch.nn.functional.softmax(outputs.logits, dim=-1) sentiment_dist.append(batch_probs.cpu()) emotion_keywords = ["愤怒", "生气", "鬼火", "耐烦", "搞哪样嘛", "恼火", "背时", "失望", "满"] for text in enhanced_texts: if any(kw in text for kw in emotion_keywords): if any(kw in text for kw in ["愤怒", "生气", "鬼火", "恼火"]): emotions.append("愤怒") elif any(kw in text for kw in ["耐烦", "搞哪样嘛"]): emotions.append("耐烦") elif "背时" in text: emotions.append("沮丧") elif any(kw in text for kw in ["失望", "满"]): emotions.append("失望") if sentiment_dist: all_probs = torch.cat(sentiment_dist, dim=0) avg_sentiment = torch.mean(all_probs, dim=0).tolist() else: avg_sentiment = [0.0, 1.0, 0.0] return { f"{speaker_type}_negative": round(avg_sentiment[0], 4), f"{speaker_type}_neutral": round(avg_sentiment[1], 4), f"{speaker_type}_positive": round(avg_sentiment[2], 4), f"{speaker_type}_emotions": ",".join(set(emotions)) if emotions else "无" } return { **analyze_speaker(agent_segments, "agent"), **analyze_speaker(customer_segments, "customer") } def _check_service_rules(self, agent_segments: List[Dict]) -> Dict: keywords = DialectProcessor.KEYWORDS found_forbidden = [] found_opening = any(kw in seg["text"] for seg in agent_segments[:3] for kw in keywords["opening"]) found_closing = any( kw in seg["text"] for seg in (agent_segments[-3:] if len(agent_segments) >= 3 else agent_segments) for kw in keywords["closing"]) for seg in agent_segments: for kw in keywords["forbidden"]: if kw in seg["text"]: found_forbidden.append(kw) break return { "opening_found": found_opening, "closing_found": found_closing, "forbidden_words": ", ".join(set(found_forbidden)) if found_forbidden else "无" } def _check_issue_resolution(self, customer_segments: List[Dict], agent_segments: List[Dict]) -> bool: if not customer_segments or not agent_segments: return False resolution_keywords = ["解决", "处理", "完成", "已", "好了", "可以了", "没问题", "明白", "清楚", "满意", "行"] unresolved_keywords = ["没解决", "行", "对", "还是", "仍然", "再", "未", "无法", "能", "行", "满意"] negation_words = ["", "没", "未", "非", "无"] gratitude_keywords = ["谢谢", "感谢", "多谢", "麻烦", "辛苦", "有劳"] full_conversation = " ".join(seg["text"] for seg in customer_segments + agent_segments) last_customer_text = customer_segments[-1]["text"] for kw in unresolved_keywords: if kw in full_conversation: negation_context = re.search(rf".{{0,5}}{kw}", full_conversation) if negation_context: context = negation_context.group(0) if not any(neg in context for neg in negation_words): return False else: return False if any(kw in last_customer_text for kw in gratitude_keywords): if not any(neg + kw in last_customer_text for neg in negation_words): return True for agent_text in [seg["text"] for seg in agent_segments[-3:]]: if any(kw in agent_text for kw in resolution_keywords): if not any(neg in agent_text for neg in negation_words): return True for cust_seg in customer_segments[-2:]: if any(kw in cust_seg["text"] for kw in ["好", "行", "可以", "明白"]): if not any(neg in cust_seg["text"] for neg in negation_words): return True if any("?" in seg["text"] or "?" in seg["text"] for seg in customer_segments[-2:]): return False return False # ====================== 辅助方法 ====================== def _get_available_batch_size(self) -> int: if not torch.cuda.is_available(): return 4 total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) per_task_mem = total_mem / self.max_concurrent return 2 if per_task_mem < 2 else 4 if per_task_mem < 4 else 8 def _get_max_concurrent_tasks(self) -> int: if torch.cuda.is_available(): total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) return 1 if total_mem < 6 else 2 if total_mem < 12 else 3 return max(1, os.cpu_count() // 2) def _check_memory_usage(self) -> bool: try: mem_percent = self.resource_monitor.memory_percent() return mem_percent.get("cpu", 0) > 85 or mem_percent.get("gpu", 0) > 85 except: return False def _extract_audio_features(self, wav_paths: List[str]) -> Dict[str, float]: combined_y = np.array([], dtype=np.float32) sr = ConfigManager().get("sample_rate", 16000) for path in wav_paths: y, _ = librosa.load(path, sr=sr) combined_y = np.concatenate((combined_y, y)) return AudioProcessor.extract_features_from_audio(combined_y, sr) def _process_asr_segments(self, wav_paths: List[str]) -> Tuple[List[Dict], str]: segments = [] full_text = "" batch_size = min(4, len(wav_paths), self._get_available_batch_size()) for i in range(0, len(wav_paths), batch_size): if not self.is_running: break batch_paths = wav_paths[i:i + batch_size] try: results = ModelLoader.asr_pipeline(batch_paths, output_dir=None, batch_size=batch_size) for result in results: for seg in result[0]["sentences"]: segments.append({ "start": seg["start"], "end": seg["end"], "text": seg["text"], "spk_id": seg.get("spk_id", "0") }) full_text += seg["text"] + " " except Exception as e: print(f"ASR批处理错误: {str(e)}") for path in batch_paths: try: result = ModelLoader.asr_pipeline(path, output_dir=None) for seg in result[0]["sentences"]: segments.append({ "start": seg["start"], "end": seg["end"], "text": seg["text"], "spk_id": seg.get("spk_id", "0") }) full_text += seg["text"] + " " except: continue return segments, full_text.strip() def _generate_labeled_text(self, all_segments: List[Dict], agent_segments: List[Dict], customer_segments: List[Dict]) -> str: agent_spk_id = agent_segments[0]["spk_id"] if agent_segments else None customer_spk_id = customer_segments[0]["spk_id"] if customer_segments else None labeled_text = [] for seg in all_segments: if seg["spk_id"] == agent_spk_id: speaker = "客服" elif seg["spk_id"] == customer_spk_id: speaker = "客户" else: speaker = f"说话人{seg['spk_id']}" labeled_text.append(f"[{speaker}]: {seg['text']}") return "\n".join(labeled_text) def _cleanup_temp_files(self, paths: List[str]): def safe_remove(path): if os.path.exists(path): try: os.remove(path) except: pass for path in paths: safe_remove(path) now = time.time() for file in os.listdir(self.temp_dir): file_path = os.path.join(self.temp_dir, file) if os.path.isfile(file_path) and (now - os.path.getmtime(file_path)) > 3600: safe_remove(file_path) def _format_duration(self, seconds: float) -> str: minutes, seconds = divmod(int(seconds), 60) hours, minutes = divmod(minutes, 60) return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def _cleanup_resources(self): gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() def stop(self): self.is_running = False # ====================== 模型加载线程 ====================== class ModelLoadThread(QThread): progress_updated = pyqtSignal(int, str) finished = pyqtSignal(bool, str) def run(self): try: config = ConfigManager().get("model_paths") if not os.path.exists(config["asr"]): self.finished.emit(False, "ASR模型路径存在") return if not os.path.exists(config["sentiment"]): self.finished.emit(False, "情感分析模型路径存在") return self.progress_updated.emit(20, "加载语音识别模型...") ModelLoader._load_asr_model(config["asr"]) self.progress_updated.emit(60, "加载情感分析模型...") ModelLoader._load_sentiment_model(config["sentiment"]) self.progress_updated.emit(100, "模型加载完成") self.finished.emit(True, "模型加载成功") except Exception as e: self.finished.emit(False, f"模型加载失败: {str(e)}") # ====================== GUI主界面(简化版) ====================== class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("贵州方言客服质检系统") self.setGeometry(100, 100, 1200, 800) self.setup_ui() self.setup_menu() self.analysis_thread = None self.model_load_thread = None self.temp_dir = "temp_wav" os.makedirs(self.temp_dir, exist_ok=True) self.model_loaded = False def setup_ui(self): main_widget = QWidget() main_layout = QVBoxLayout() main_widget.setLayout(main_layout) self.setCentralWidget(main_widget) toolbar = QToolBar("主工具栏") self.addToolBar(toolbar) actions = [ ("添加文件", "icons/add.png", self.add_files), ("开始分析", "icons/start.png", self.start_analysis), ("停止分析", "icons/stop.png", self.stop_analysis), ("设置", "icons/settings.png", self.open_settings) ] for name, icon, func in actions: action = QAction(QIcon(icon), name, self) action.triggered.connect(func) toolbar.addAction(action) splitter = QSplitter(Qt.Horizontal) main_layout.addWidget(splitter) left_widget = QWidget() left_layout = QVBoxLayout() left_widget.setLayout(left_layout) left_layout.addWidget(QLabel("待分析文件列表")) self.file_list = QListWidget() self.file_list.setSelectionMode(QListWidget.ExtendedSelection) left_layout.addWidget(self.file_list) right_widget = QWidget() right_layout = QVBoxLayout() right_widget.setLayout(right_layout) right_layout.addWidget(QLabel("分析进度")) self.progress_bar = QProgressBar() self.progress_bar.setRange(0, 100) right_layout.addWidget(self.progress_bar) self.current_file_label = QLabel("当前文件: 无") right_layout.addWidget(self.current_file_label) self.tab_widget = QTabWidget() right_layout.addWidget(self.tab_widget, 1) text_tab = QWidget() text_layout = QVBoxLayout() text_tab.setLayout(text_layout) self.text_result = QTextEdit() self.text_result.setReadOnly(True) text_layout.addWidget(self.text_result) self.tab_widget.addTab(text_tab, "文本结果") detail_tab = QWidget() detail_layout = QVBoxLayout() detail_tab.setLayout(detail_layout) self.result_table = QTableWidget() self.result_table.setColumnCount(10) self.result_table.setHorizontalHeaderLabels([ "文件名", "时长", "语速", "音量稳定性", "客服情感", "客户情感", "开场白", "结束语", "禁用词", "问题解决" ]) self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) detail_layout.addWidget(self.result_table) self.tab_widget.addTab(detail_tab, "详细结果") splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([300, 900]) def setup_menu(self): menu_bar = self.menuBar() file_menu = menu_bar.addMenu("文件") file_actions = [ ("添加文件", self.add_files), ("导出结果", self.export_results), ("退出", self.close) ] for name, func in file_actions: action = QAction(name, self) action.triggered.connect(func) file_menu.addAction(action) analysis_menu = menu_bar.addMenu("分析") analysis_actions = [ ("开始分析", self.start_analysis), ("停止分析", self.stop_analysis) ] for name, func in analysis_actions: action = QAction(name, self) action.triggered.connect(func) analysis_menu.addAction(action) settings_menu = menu_bar.addMenu("设置") settings_actions = [ ("系统配置", self.open_settings), ("加载模型", self.load_models) ] for name, func in settings_actions: action = QAction(name, self) action.triggered.connect(func) settings_menu.addAction(action) def add_files(self): files, _ = QFileDialog.getOpenFileNames( self, "选择音频文件", "", "音频文件 (*.mp3 *.wav *.amr *.m4a)" ) for file in files: self.file_list.addItem(file) def start_analysis(self): if self.file_list.count() == 0: QMessageBox.warning(self, "警告", "请先添加要分析的音频文件") return if not self.model_loaded: QMessageBox.warning(self, "警告", "模型未加载,请先加载模型") return audio_paths = [self.file_list.item(i).text() for i in range(self.file_list.count())] self.text_result.clear() self.result_table.setRowCount(0) self.analysis_thread = AnalysisThread(audio_paths, self.temp_dir) self.analysis_thread.progress_updated.connect(self.update_progress) self.analysis_thread.result_ready.connect(self.handle_result) self.analysis_thread.finished_all.connect(self.analysis_finished) self.analysis_thread.error_occurred.connect(self.show_error) self.analysis_thread.memory_warning.connect(self.handle_memory_warning) self.analysis_thread.start() def stop_analysis(self): if self.analysis_thread and self.analysis_thread.isRunning(): self.analysis_thread.stop() self.analysis_thread.wait() QMessageBox.information(self, "信息", "分析已停止") def load_models(self): if self.model_load_thread and self.model_load_thread.isRunning(): return self.model_load_thread = ModelLoadThread() self.model_load_thread.progress_updated.connect(lambda value, _: self.progress_bar.setValue(value)) self.model_load_thread.finished.connect(self.handle_model_load_result) self.model_load_thread.start() def update_progress(self, progress: int, message: str, current_file: str): self.progress_bar.setValue(progress) self.current_file_label.setText(f"当前文件: {current_file}") def handle_result(self, result: Dict): if result["status"] == "success": self.text_result.append( f"文件: {result['file_name']}\n状态: {result['status']}\n时长: {result['duration_str']}") self.text_result.append( f"语速: {result['syllable_rate']} 音节/秒\n音量稳定性: {result['volume_stability']}") self.text_result.append( f"客服情感: 负面({result['agent_negative']:.2%}) 中性({result['agent_neutral']:.2%}) 正面({result['agent_positive']:.2%})") self.text_result.append(f"客服情绪: {result['agent_emotions']}") self.text_result.append( f"客户情感: 负面({result['customer_negative']:.2%}) 中性({result['customer_neutral']:.2%}) 正面({result['customer_positive']:.2%})") self.text_result.append(f"客户情绪: {result['customer_emotions']}") self.text_result.append( f"开场白: {'有' if result['opening_found'] else '无'}\n结束语: {'有' if result['closing_found'] else '无'}") self.text_result.append( f"禁用词: {result['forbidden_words']}\n问题解决: {'是' if result['issue_resolved'] else '否'}") self.text_result.append("\n=== 对话文本 ===\n" + result["asr_text"] + "\n" + "=" * 50 + "\n") row = self.result_table.rowCount() self.result_table.insertRow(row) items = [ result["file_name"], result["duration_str"], str(result["syllable_rate"]), str(result["volume_stability"]), f"负:{result['agent_negative']:.2f} 中:{result['agent_neutral']:.2f} 正:{result['agent_positive']:.2f}", f"负:{result['customer_negative']:.2f} 中:{result['customer_neutral']:.2f} 正:{result['customer_positive']:.2f}", "是" if result["opening_found"] else "否", "是" if result["closing_found"] else "否", result["forbidden_words"], "是" if result["issue_resolved"] else "否" ] for col, text in enumerate(items): item = QTableWidgetItem(text) if col in [6, 7] and text == "否": item.setBackground(QColor(255, 200, 200)) if col == 8 and text != "无": item.setBackground(QColor(255, 200, 200)) if col == 9 and text == "否": item.setBackground(QColor(255, 200, 200)) self.result_table.setItem(row, col, item) def analysis_finished(self): QMessageBox.information(self, "完成", "所有音频分析完成") self.progress_bar.setValue(100) def show_error(self, title: str, message: str): QMessageBox.critical(self, title, message) def handle_memory_warning(self): QMessageBox.warning(self, "内存警告", "内存使用过高,分析已停止") def handle_model_load_result(self, success: bool, message: str): if success: self.model_loaded = True QMessageBox.information(self, "成功", message) else: QMessageBox.critical(self, "错误", message) def open_settings(self): settings_dialog = QDialog(self) settings_dialog.setWindowTitle("系统设置") settings_dialog.setFixedSize(500, 300) # 高度减少 layout = QVBoxLayout() config = ConfigManager().get("model_paths") settings = [ ("ASR模型路径:", config["asr"], self.browse_directory), ("情感模型路径:", config["sentiment"], self.browse_directory) ] for label, value, func in settings: h_layout = QHBoxLayout() h_layout.addWidget(QLabel(label)) line_edit = QLineEdit(value) browse_btn = QPushButton("浏览...") browse_btn.clicked.connect(lambda _, le=line_edit: func(le)) h_layout.addWidget(line_edit) h_layout.addWidget(browse_btn) layout.addLayout(h_layout) spin_settings = [ ("最大并发任务:", "max_concurrent", 1, 8), ("最大音频时长(秒):", "max_audio_duration", 60, 86400) ] for label, key, min_val, max_val in spin_settings: h_layout = QHBoxLayout() h_layout.addWidget(QLabel(label)) spin_box = QSpinBox() spin_box.setRange(min_val, max_val) spin_box.setValue(ConfigManager().get(key, min_val)) h_layout.addWidget(spin_box) layout.addLayout(h_layout) button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(settings_dialog.accept) button_box.rejected.connect(settings_dialog.reject) layout.addWidget(button_box) settings_dialog.setLayout(layout) if settings_dialog.exec_() == QDialog.Accepted: ConfigManager().set("model_paths", { "asr": layout.itemAt(0).layout().itemAt(1).widget().text(), "sentiment": layout.itemAt(1).layout().itemAt(1).widget().text() }) ConfigManager().set("max_concurrent", layout.itemAt(2).layout().itemAt(1).widget().value()) ConfigManager().set("max_audio_duration", layout.itemAt(3).layout().itemAt(1).widget().value()) ModelLoader.reload_models() def browse_directory(self, line_edit): path = QFileDialog.getExistingDirectory(self, "选择目录") if path: line_edit.setText(path) def export_results(self): if self.result_table.rowCount() == 0: QMessageBox.warning(self, "警告", "没有可导出的结果") return path, _ = QFileDialog.getSaveFileName(self, "保存结果", "", "CSV文件 (*.csv)") if not path: return try: with open(path, "w", encoding="utf-8") as f: headers = [self.result_table.horizontalHeaderItem(col).text() for col in range(self.result_table.columnCount())] f.write(",".join(headers) + "\n") for row in range(self.result_table.rowCount()): row_data = [self.result_table.item(row, col).text() for col in range(self.result_table.columnCount())] f.write(",".join(row_data) + "\n") QMessageBox.information(self, "成功", f"结果已导出到: {path}") except Exception as e: QMessageBox.critical(self, "错误", f"导出失败: {str(e)}") def closeEvent(self, event): if self.analysis_thread and self.analysis_thread.isRunning(): self.analysis_thread.stop() self.analysis_thread.wait() try: for file in os.listdir(self.temp_dir): file_path = os.path.join(self.temp_dir, file) if os.path.isfile(file_path): for _ in range(3): try: os.remove(file_path); break except: time.sleep(0.1) os.rmdir(self.temp_dir) except: pass event.accept() # ====================== 程序入口 ====================== if __name__ == "__main__": torch.set_num_threads(4) app = QApplication(sys.argv) app.setStyle('Fusion') window = MainWindow() window.show() sys.exit(app.exec_())
08-05
【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值