垃圾回收

GC(Garbag Collection)基本原理

将内存中不在被使用的对象回收,GC中用于回收的方法称为收集器,由于GC消耗一些资源和时间,Java在对象的生命周期特征分析后,按新生代,旧生代的方式对对象进行收集,尽可能缩短GC对应用造成暂停。

对新生代的对象收集称为 Minor GC
对旧生代的对象收集称为 Full GC
程序中主动调用System.gc()强制执行为Full GC

JVM对象的引用分类

在JDK1.2以前,Java中引用的定义很传统: 如果引用类型的数据中存储的数值代表的是另一块内存的起始地址,就称这块内存代表着一个引用。这种定义有些狭隘,一个对象在这种定义下只有被引用或者没有被引用两种状态。
我们希望能描述这一类对象: 当内存空间还足够时,则能保存在内存中;如果内存空间在进行垃圾回收后还是非常紧张,则可以抛弃这些对象。很多系统中的缓存对象都符合这样的场景。
在JDK1.2之后,Java对引用的概念做了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)四种,这四种引用的强度依次递减。

1.强引用:默认情况下,对象采用均为强引用。(该对象实例没有其他对象引用,会被回收)
2.软引用:java提供一种比较适合于缓存场景的应用(当内存不够会被回收)
3.弱引用:在GC时一定会被回收
4.虚引用:虚引用只是用来得知对象是否被GC

垃圾判定算法

1.引用计数法
引用计数法描述的算法为:给对象增加一个引用计数器,每当有一个地方引用它时,计数器就+1;当引用失效时,计数器就-1;任何时刻计数器为0的对象就是不能再被使用的,即对象已“死”。
引用计数法实现简单,判定效率也比较高,在大部分情况下都是一个比较好的算法。比如Python语言就是采用的引用计数法来进行内存管理的。

但是,在主流的JVM中没有选用引用计数法来管理内存,最主要的原因是引用计数法无法解决对象的循环引用问题。

/**
  * JVM参数:-XX:+PrintGC
  *
*/
public class Test {
	public Object instance = null;
	private static int _1MB = 1024 * 1024;
	private byte[] bigSize = new byte[2 * _1MB];
	public static void testGC() {
		Test test1 = new Test();
		Test test2 = new Test();
		test1.instance = test2;
		test2.instance = test1;
		test1 = null;
		test2 = null;
		// 强制JVM进行垃圾回收
		System.gc();
	}
	public static void main(String[] args) {
		testGC();
	}
}

输出:

程序输出:[GC (System.gc()) 6092K->856K(125952K), 0.0007504 secs]

从结果可以看出,GC日志包含" 6092K->856K(125952K)",意味着虚拟机并没有因为这两个对象互相引用就不回收他们。即JVM并不使用引用计数法来判断对象是否存活。

2. 可达性分析算法
通过一系列称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索走过的路径称为“引用链”,当一个对象到 GC Roots 没有任何的引用链相连时(从 GC Roots 到这个对象不可达)时,证明此对象不可用。以下图为例:
在这里插入图片描述

对象Object5 —Object7之间虽然彼此还有联系,但是它们到 GC Roots 是不可达的,因此它们会被判定为可回收对象。

在Java语言中,可作为GC Roots的对象包含以下几种:

 虚拟机栈(栈帧中的本地变量表)中引用的对象。
 方法区中静态属性引用的对象
 方法区中常量引用的对象
 本地方法栈中(Native方法)引用的对象

垃圾回收算法

1 .标记-清除算法

“标记-清除”算法是最基础的收集算法。算法分为标记和清除两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象(标记过程参见1.2可达性分析)。后续的收集算法都是基于这种思路并对其不足加以改进而已。
“标记-清除”算法的不足主要有两个:

效率问题:标记和清除这两个过程的效率都不高
空间问题:标记清除后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行中需要分配较大对象时,无法找到足够连续内存而不得不提前触发另一次垃圾收集。

在这里插入图片描述

2 .复制算法(新生代回收算法)

“复制”算法是为了解决“标记-清除”的效率问题。它将可用内存按容量划分为大小相等的两块,每次只使用其中一块。当这块内存需要进行垃圾回收时,会将此区域还存活着的对象复制到另一块上面,然后再把已经使用过的内存区域一次清理掉。这样做的好处是每次都是对整个半区进行内存回收,内存分配时也就不需要考虑内存碎片等的复杂情况,只需要移动堆顶指针,按顺序分配即可。此算法实现简单,运行高效。算法的执行流程如下图:
在这里插入图片描述

现在的商用虚拟机(包括HotSpot)都是采用这种收集算法来回收新生代

新生代中98%的对象都是"朝生夕死"的,所以并不需要按照1 : 1的比例来划分内存空间,而是将内存(新生代内存)分为一块较大的Eden(伊甸园)空间和两块较小的Survivor(幸存者)空间,每次使用Eden和其中一块Survivor(两个Survivor区域一个称为From区,另一个称为To区域)。当回收时,将Eden和Survivor中还存活的对象一次性复制到另一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。
当Survivor空间不够用时,需要依赖其他内存(老年代)进行分配担保。
HotSpot默认Eden与Survivor的大小比例是8 : 1,也就是说Eden:Survivor From : Survivor To = 8:1:1。所以每次新生代可用内存空间为整个新生代容量的90%,而剩下的10%用来存放回收后存活的对象。

HotSpot实现的复制算法流程如下:

当Eden区满的时候,会触发第一次Minor gc,把还活着的对象拷贝到Survivor From区;当Eden区再次出发Minor gc的时候,会扫描Eden区和From区,对两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域,并将Eden区和From区清空。
当后续Eden区又发生Minor gc的时候,会对Eden区和To区进行垃圾回收,存活的对象复制到From区,并将Eden区和To区清空
部分对象会在From区域和To区域中复制来复制去,如此交换15次(由JVM参数MaxTenuringThreshold决定,这个参数默认是15),最终如果还存活,就存入老年代。

在这里插入图片描述

3 .标记整理算法(老年代回收算法)

复制收集算法在对象存活率较高时会进行比较多的复制操作,效率会变低。因此在老年代一般不能使用复制算法。
针对老年代的特点,提出了一种称之为“标记-整理算法”。标记过程仍与“标记-清除”过程一致,但后续步骤不是直接对可回收对象进行清理,而是让所有存活对象向一端移动,然后直接清理掉端边界以外的内存。流程图如下:
在这里插入图片描述

4 .分代收集算法

当前JVM垃圾收集都采用的是"分代收集(Generational Collection)"算法,这个算法并没有新思想,只是根据对象存活周期的不同将内存划分为几块。
一般是把Java堆分为新生代和老年代。在新生代中,每次垃圾回收都有大批对象死去,只有少量存活,因此我们采用复制算法;而老年代中对象存活率高、没有额外空间对它进行分配担保,就必须采用"标记-清理"或者"标记-整理"算法。

面试题: 请问了解Minor GC和Full GC么,这两种GC有什么不一样吗?

Minor GC又称为新生代GC : 指的是发生在新生代的垃圾收集。因为Java对象大多都具备朝生夕灭的特性,因此Minor GC(采用复制算法)非常频繁,一般回收速度也比较快。
Full GC 又称为老年代GC或者Major GC : 指发生在老年代的垃圾收集。出现了Major GC,经常会伴随至少一次的Minor GC(并非绝对,在Parallel Scavenge收集器中就有直接进行Full GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

为何废除永久代?

JDK1.8 Perm(永久代)废除,用元数据空间(Metaspace)替代

1.类的元数据(方法,数据,方法信息)超过永久代,会抛出OOM(虚拟机死掉)
2.对永久代调优过程非常困难
3.为了融合HotSpot JVM 与 JRockitVM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值