优化算法
数学建模问题总共分为四类:
1. 分类问题 2. 优化问题 3. 评价问题 4. 预测问题
一、粒子群算法(PSO)
算法对于Hepper的模拟鸟群(鱼群)的模型进行修正,同遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交叉以及变异,而是粒子在解空间追随最优的粒子进行搜索。
PSO的优势在于简单,容易实现,无需梯度信息,参数少,特别是其天然的实数编码特点特别适合于处理实优化问题。同时又有深刻的智能背景,既适合科学研究,又特别适合工程应用。
基本PSO算法
D维空间中,有m个粒子;
粒子i位置:xi=(xi1,xi2,…xiD)
粒子i速度:vi=(vi1,vi2,…viD),1≤i≤m,1 ≤d ≤D
粒子i经历过的历史最好位置:pi=(pi1,pi2,…piD)
群体内(或领域内)所有粒子所经历过的最好位置: pg =(pg1,pg2,…pgD)
二、模拟退火算法(SA)
模拟退火过程:
设定初始高温,相当于物理退火的加温过程。初始温度要足够高,在实际应用中,要根据以往的经验,通过反复实验来确定T0的值。
热平衡达到,相当于物理退火的等温过程。是指在一个给定温度下,SA用特殊的抽样策略进行随机搜索,最终达到平衡状态的过程。这是SA算法的内循环过程。
降温函数,相当于物理退火的冷却过程。用来控制温度的下降方式,这是SA算法的外循环过程。常用的降温函数有Tk+1=Tk-DT,Tk+1=Tk*r,其中r∈(0.95,0.99)。
三、遗传算法
产生一个初始种群
根据问题的目标函数构造适值函数