Trusted Board Boot

93 篇文章 ¥59.90 ¥99.00
Trusted Board Boot (TBB) 功能确保通过验证所有固件镜像防止恶意固件运行,通过建立信任链来实现。本文深入介绍ARM平台上的Trusted Firmware-A (TF-A) TBB设计,涉及信任链、启动顺序、认证框架和证书生成工具等方面,旨在实现TBBR启动要求。
根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### Secure Boot Configuration for OEM Devices Secure boot is a critical security mechanism that ensures a device boots using only software that is trusted by the device manufacturer. In the context of OEM devices, secure boot configuration typically involves setting up cryptographic verification of firmware or software components before they are allowed to execute. This prevents unauthorized or malicious code from running during the boot process. For OEM devices, the secure boot configuration can vary depending on the hardware platform and the specific security requirements of the system. However, common steps involve setting up secure keys, signing the boot images, and configuring the hardware to verify the authenticity of these images before execution. In embedded systems such as those based on the ARM Cortex-M series or Xilinx Zynq SoCs, secure boot implementation often includes defining secure boot headers, configuring authentication mechanisms, and ensuring that the boot process adheres to a chain of trust. For example, in a system using a Cortex-M7 core, a secure boot header configuration may include defining a boot configuration word, specifying secure boot start addresses, and setting watchdog timeouts for the application core, as seen in the structure definition of a `bvt_header_config_t` instance [^2]. This configuration helps ensure that the system boots securely and that unauthorized modifications to the boot process are detected and prevented. When configuring secure boot for OEM devices, it is essential to consider the following aspects: - **Key Management**: Secure boot relies on cryptographic keys to authenticate the firmware. These keys must be securely stored and managed to prevent compromise. - **Image Signing**: Firmware images must be signed using private keys, and the corresponding public keys must be embedded in the device to verify the signature during boot. - **Hardware Configuration**: The hardware must be configured to enforce secure boot policies, such as restricting execution to signed images and preventing unauthorized access to secure resources. - **Authentication Mechanisms**: Depending on the platform, mechanisms such as Debug Access Port (DAP) authentication may be required to ensure that only authorized entities can access or modify the secure boot configuration [^1]. For platforms like the Xilinx Zynq 7Z010, secure boot configuration may involve modifying configuration files such as `Kconfig` to specify the board configuration name, which can influence how the boot loader (e.g., U-Boot) initializes the system [^3]. ### Code Example: Secure Boot Header Configuration Below is an example of a secure boot header configuration for a device using a similar structure to the one described in the provided reference [^2]: ```c /* Define the boot configuration word with specific settings */ #define BOOT_CONFIG_WORD (BVT_BCW_CPDIVS_SET(1) | CM7_0_M_EN) /* Define the timeout for the application core watchdog */ #define APP_WDG_TIMEOUT (120000) // 10ms based on 12MHz SIRC clock /* Flash erased status indicator */ #define RESERVED (0xFFFFFFFF) /* Secure boot header configuration */ const bvt_header_config_t bvt_header BVT_HEADER_SEG = { BVT_VALID_MARK, // BVT marker indicating valid boot image BOOT_CONFIG_WORD, // Boot configuration word (uint32_t)&secure_boot_group, // Secure boot start address RESERVED, // Lifecycle configuration (not set) DEFAULT_START_ADDRESS, // Default start address for the main core RESERVED, // Reserved fields RESERVED, RESERVED, RESERVED, RESERVED, APP_WDG_TIMEOUT // Watchdog timeout for the application core }; ``` This code snippet demonstrates how a secure boot header might be configured in a real-world implementation, ensuring that the device boots securely and that unauthorized modifications are detected. ### Considerations for OEM Device Manufacturers OEM device manufacturers must carefully evaluate their secure boot requirements based on the threat model and the environment in which the device will operate. Factors such as the physical security of the device, the sensitivity of the data it handles, and regulatory compliance requirements can all influence the secure boot configuration. In addition to the technical aspects of secure boot, OEMs should also consider the operational aspects, such as key revocation procedures, firmware update mechanisms, and support for secure debugging interfaces like DAP [^1].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arm精选

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值