python实现梯度下降并可视化
import numpy as np
import matplotlib.pyplot as plt
def compute_error_for_line_given_points(b, w, points):
totalError = 0
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
totalError += (y - (w * x + b)) ** 2
return totalError / float(len(points))
def step_gradient(b_current, w_current, points, learningRate):
b_gradient = 0
w_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
b_gradient += -(2 / N) * (y - ((w_current * x) + b_current))
w_gradient += -(2 / N) * x * (y - ((w_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_w = w_current - (learningRate * w_gradient)
return [new_b, new_w]
def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations):
b = starting_b
m = starting_w
for i in range(num_iterations):
b, m = step_gradient(b, m, np.array(points), learning_rate)
return b, m
def run():
points = np.genfromtxt("E:\GithubProject\Deep-Learning-with-PyTorch-Tutorials\lesson04-简单回归案例实战\data.csv",
delimiter=",")
learning_rate = 0.0001
initial_b = 0
initial_w = 0
num_iterations = 10000
print("Starting_gradient descent at b={0},w={1},error={2}".format(initial_b, initial_w,
compute_error_for_line_given_points(initial_b,
initial_w,
points)))
p=np.array(points)
plt.figure()
plt.plot(p[:,0],p[:,1],'ro')
plt.xlabel('x')
plt.ylabel('y')
plt.title('data')
print("Running...")
b, w = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
print("After {0} iterations b={1},m={2},error={3}".format(num_iterations, b, w,
compute_error_for_line_given_points(b, w, points)))
x=np.linspace(0,100,100)
y=w*x+b
plt.plot(x,y,'orange')
plt.show()
if __name__ == "__main__":
run()
下面是可视化图以及拟合的曲线
数据就不给了,就是一堆点集,读者可以随机来生成