Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning

文章旨在将深度神经网络模型的成功经验拓展到基于模型的强化学习中。展示了神经网络模型在接触丰富的模拟运动任务中的有效应用,评估了神经网络动力学模型学习的设计决策,还介绍了用基于模型的学习器初始化无模型学习器以降低样本复杂度等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章的目标是将深度神经网络模型在其他领域中的成功扩展到基于模型的强化学习中。

The contribution of this paper is:

  1. They demonstrate effective model-based reinforcement learning with neural network models for several contact-rich simulated locomotion tasks from standard deep reinforcement learning benchmarks.
  2. They empirically evaluate a number of design decisions for neural network dynamics model learning.
  3. They show how a model-based learner can be used to initialize a model-free learner to achieve high rewards while drastically reducing sample complexity.

Sample Complexity: model-based algorithms>model-free learners

training neural network dynamics models for model-based reinforcement learning
explore how such models can be used to accelerate a model-free learner

model-based acceleration

IV-A detail learned dynamics function
IV-B how to train the learned dynamics function
IV-C how to extract a policy with our learned dynamics function
IV-D how to use reinforcement learning to further improve our learned dynamics function

model-based initialization of model-free reinforcement learning algorithm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值