《A survey on deep learning in medical image analysis》论文阅读

本文回顾了300多篇关于深度学习在医学图像分析的应用,涵盖了分类、检测、分割、配准等多个任务,强调了深度学习技术在医学图像分析中的广泛渗透和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Geert Litjens ∗, Thijs Kooi , Babak Ehteshami Bejnordi , Arnaud Arindra Adiyoso Setio , Francesco Ciompi, Mohsen Ghafoorian, JeroenA.W.M. van der Laak, Bram van Ginneken, Clara I. Sánchez

Survey Paper
总结了所有医学图像分析中使用的深度学习算法
确定了最成功的的关键图像分析任务算法
总结了三百篇将深度学习应用于不同应用的论文

摘要

深度学习算法,特别是卷积网络,已迅速成为分析医学图像的首选方法。本文回顾了与医学图像分析相关的主要深度学习概念,总结了300多个对该领域的贡献,其中大部分都出现在去年(2016)。我们调查了深度学习在图像分类,对象检测、分割、匹配和其他任务中的使用。每个应用领域的研究提供简明概述:神经、视网膜、肺、数字病理、乳房、心脏、腹部、肌肉骨骼。最后,我们总结了当前最先进的技术,对未来研究的开放性挑战和方向进行了批判性讨论。

关键词:深度学习;卷积神经网络;医学影像;调查


1. 介绍

一旦可以将医学图像扫描并加载到计算机中,研究人员就可以构建自动分析系统。最初,从20世纪70年代到90年代,医学图像分析是通过顺序应用低级像素处理(边缘和线检测器滤波器、区域增长)和数学建模(拟合线、圆和椭圆)来构建复合规则的。解决特定任务的系统。有一种用专家系统来类比很多在同一时期的人工智能中很流行的if-then-else语句。这些专家系统被描述为GOFAI(良好的老式人工智能)并且通常很脆弱;类似于基于规则的图像处理系统。

在20世纪90年代末,使用训练数据开发系统的监督技术在医学图像分析中变得越来越流行。示例包括活动形状模型(用于分割),图谱方法(其中适合于新数据的地图集形成训练数据),以及特征提取和统计分类器的使用(用于计算机辅助检测和诊断)的概念。这种模式识别或机器学习方法仍然

Foreword Computational Medical Image Analysis has become a prominent field of research at the intersection of Informatics, Computational Sciences, and Medicine, supported by a vibrant community of researchers working in academics, industry, and clinical centers. During the past few years, Machine Learning methods have brought a revolution to the Computer Vision community, introducing novel efficient solutions to many image analysis problemsthat had long remained unsolved.For this revolution to enter the field of Medical Image Analysis, dedicated methods must be designed which take into account the specificity of medical images. Indeed, medical images capture the anatomy and physiology of patients through the measurements of geometrical, biophysical, and biochemical properties of their living tissues. These images are acquired with algorithms that exploit complex med- ical imaging processes whose principles must be well understood as well as those governing the complex structures and functions of the human body. The book Deep Learning for Medical Image Analysis edited by S. Kevin Zhou, Hayit Greenspan, and Dinggang Shen, top-notch researchers from both academia and industry in designing machine learning methods for medical image analysis, cov- ers state-of-the-art reviews of deep learning approaches for medical image analysis, including medical image detection/recognition, medical image segmentation, medi- cal image registration, computer aided diagnosis and disease quantification, to name some of the most important addressed problems. The book, which starts with an in- troduction to Convolutional Neural Networks for Computer Vision presents a set of novel deep learning methods applied to a variety of clinical problems and imaging modalities operating at various scales, including X-ray radiographies, Magnetic Res- onance Imaging, Computed Tomography, microscopic imaging, ultrasound imaging, etc. This impressive collection of excellent contributions will definitely se
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值