Prime Ring Problem(Dfs求素数环)

环形排列求解
本文介绍了一个关于环形排列的问题,要求将1到n的自然数填入由n个圆圈组成的环中,使得相邻两个圆圈内的数字之和为素数。通过递归搜索算法实现了这一过程,并给出了具体的代码实现。

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. 

Note: the number of first circle should always be 1. 

Input

n (0 < n < 20). 

Output

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order. 

You are to write a program that completes above process. 

Print a blank line after each case. 

Sample Input

6
8

Sample Output

Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
#include<iostream>
#include<cstdio>
#include<string.h>
using namespace std;
int n,cnt=1;
int vis[21];int A[21];
int prime[38]= {0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1};
void dfs(int cur)
{
    if(cur==n&&prime[A[0]+A[n-1]])
    {
        cout<<A[0];
        for(int i=1;i<n;i++)
        cout<<" "<<A[i];
        cout<<endl;
    }
    else for(int i=2;i<=n;i++)
        if(!vis[i]&&prime[i+A[cur-1]])
        {
            A[cur] = i;
            vis[i]=1;
            dfs(cur+1);
            vis[i]=0;
        }
}
int main(){
    A[0]=1;
    while(cin>>n)
    {
        memset(vis,0,sizeof(vis));
        cout<<"Case "<<cnt++<<":"<<endl;
        dfs(1);
      //  cout<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值