pytorch官方文档有关DataLoader数据迭代器的说明

本文详细介绍了PyTorch中DataLoader的功能与用法,包括如何通过设置不同的参数来实现数据加载的批量化、随机化及多进程加载等功能,帮助读者更好地理解和使用DataLoader。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, pin_memory=False, drop_last=False) [source]

Data loader. Combines a dataset and a sampler, and providessingle- or multi-process iterators over the dataset.

Parameters:
  • dataset (Dataset) – dataset from which to load the data.
  • batch_size (int, optional) – how many samples per batch to load(default: 1).
  • shuffle (bool, optional) – set to True to have the data reshuffledat every epoch (default: False).
  • sampler (Sampler, optional) – defines the strategy to draw samples fromthe dataset. If specified, shuffle must be False.
  • batch_sampler (Sampler, optional) – like sampler, but returns a batch ofindices at a time. Mutually exclusive with batch_size, shuffle,sampler, and drop_last.
  • num_workers (int, optional) – how many subprocesses to use for dataloading. 0 means that the data will be loaded in the main process(default: 0)
  • collate_fn (callable, optional) – merges a list of samples to form a mini-batch.
  • pin_memory (bool, optional) – If True, the data loader will copy tensorsinto CUDA pinned memory before returning them.
  • drop_last (bool, optional) – set to True to drop the last incomplete batch,if the dataset size is not divisible by the batch size. If False andthe size of dataset is not divisible by the batch size, then the last batchwill be smaller. (default: False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值