动态规划相关题目

1.动态规划理论基础

1.1 什么是动态规划?

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。

1.2 动态规划的解题步骤

动态规划五部曲:

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

2.斐波那契数

题目:
在这里插入图片描述
思路:
状态转移方程 dp[i] = dp[i - 1] + dp[i - 2]

代码:

class Solution:
    def fib(self, n: int) -> int:
       
        # 排除 Corner Case
        if n == 0:
            return 0
        
        # 创建 dp table 
        dp = [0] * (n + 1)

        # 初始化 dp 数组
        dp[0] = 0
        dp[1] = 1

        # 遍历顺序: 由前向后。因为后面要用到前面的状态
        for i in range(2, n + 1):

            # 确定递归公式/状态转移公式
            dp[i] = dp[i - 1] + dp[i - 2]
        
        # 返回答案
        return dp[n]

3.爬楼梯

题目:
在这里插入图片描述
思路:
递推公式dp[i] = dp[i - 1] + dp[i - 2]

代码:

class Solution:
    def climbStairs(self, n: int) -> int:
        if n == 1:return 1
        if n == 2:return 2
        dp = [0] * (n + 1)
        dp[1] = 1
        dp[2] = 2
        for i in range(3,n+1):
            dp[i] = dp[i - 2] + dp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值