LLaSA: 为基于 LLaMA 的语音合成扩展训练时间和测试时间计算功能

我们的模型 Llasa 是一个文本到语音(TTS)系统,它扩展了基于文本的 LLaMA(1B、3B 和 8B)语言模型,纳入了 XCodec2 编码本中的语音标记,其中包含 65,536 个标记。 我们在一个包含 250,000 小时中英语音数据的数据集上对 Llasa 进行了训练。 该模型既能完全根据输入文本生成语音,也能利用给定的语音提示生成语音。

如何使用

安装 XCodec2。 (请使用新版 xcodec2==0.1.3)

conda create -n xcodec2 python=3.9
conda activate xcodec2
pip install xcodec2==0.1.3

仅根据输入文本进行语音合成

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf

llasa_3b ='HKUST-Audio/Llasa-3B'

tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
model.eval() 
model.to('cuda')

from xcodec2.modeling_xcodec2 import XCodec2Model
 
model_path = "HKUST-Audio/xcodec2"  
 
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()   

input_text = 'Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.'
# input_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
def ids_to_speech_tokens(speech_ids):
 
    speech_tokens_str = []
    for speech_id in speech_ids:
        speech_tokens_str.append(f"<|s_{speech_id}|>")
    return speech_tokens_str

def extract_speech_ids(speech_tokens_str):
 
    speech_ids = []
    for token_str in speech_tokens_str:
        if token_str.startswith('<|s_') and token_str.endswith('|>'):
            num_str = token_str[4:-2]

            num = int(num_str)
            speech_ids.append(num)
        else:
            print(f"Unexpected token: {token_str}")
    return speech_ids

#TTS start!
with torch.no_grad():
 
    formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

    # Tokenize the text
    chat = [
        {"role": "user", "content": "Convert the text to speech:" + formatted_text},
        {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
    ]

    input_ids = tokenizer.apply_chat_template(
        chat, 
        tokenize=True, 
        return_tensors='pt', 
        continue_final_message=True
    )
    input_ids = input_ids.to('cuda')
    speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')

    # Generate the speech autoregressively
    outputs = model.generate(
        input_ids,
        max_length=2048,  # We trained our model with a max length of 2048
        eos_token_id= speech_end_id ,
        do_sample=True,    
        top_p=1,           #  Adjusts the diversity of generated content
        temperature=0.8,   #  Controls randomness in output
    )
    # Extract the speech tokens
    generated_ids = outputs[0][input_ids.shape[1]:-1]

    speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)   

    # Convert  token <|s_23456|> to int 23456 
    speech_tokens = extract_speech_ids(speech_tokens)

    speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)

    # Decode the speech tokens to speech waveform
    gen_wav = Codec_model.decode_code(speech_tokens) 
 

sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)

利用给定的语音提示进行语音合成

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf

llasa_3b ='HKUST-Audio/Llasa-3B'

tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
model.eval() 
model.to('cuda')

from xcodec2.modeling_xcodec2 import XCodec2Model
 
model_path = "HKUST-Audio/xcodec2"  
 
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()   
# only 16khz speech support!
prompt_wav, sr = sf.read("太乙真人.wav")   # you can find wav in Files
#prompt_wav, sr = sf.read("Anna.wav") # English prompt
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)  

prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
#promt_text = "A chance to leave him alone, but... No. She just wanted to see him again. Anna, you don't know how it feels to lose a sister. Anna, I'm sorry, but your father asked me not to tell you anything."
target_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
#target_text = "Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me."
input_text = prompt_text   + target_text

def ids_to_speech_tokens(speech_ids):
 
    speech_tokens_str = []
    for speech_id in speech_ids:
        speech_tokens_str.append(f"<|s_{speech_id}|>")
    return speech_tokens_str

def extract_speech_ids(speech_tokens_str):
 
    speech_ids = []
    for token_str in speech_tokens_str:
        if token_str.startswith('<|s_') and token_str.endswith('|>'):
            num_str = token_str[4:-2]

            num = int(num_str)
            speech_ids.append(num)
        else:
            print(f"Unexpected token: {token_str}")
    return speech_ids

#TTS start!
with torch.no_grad():
    # Encode the prompt wav
    vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
    print("Prompt Vq Code Shape:", vq_code_prompt.shape )   

    vq_code_prompt = vq_code_prompt[0,0,:]
    # Convert int 12345 to token <|s_12345|>
    speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)

    formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

    # Tokenize the text and the speech prefix
    chat = [
        {"role": "user", "content": "Convert the text to speech:" + formatted_text},
        {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
    ]

    input_ids = tokenizer.apply_chat_template(
        chat, 
        tokenize=True, 
        return_tensors='pt', 
        continue_final_message=True
    )
    input_ids = input_ids.to('cuda')
    speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')

    # Generate the speech autoregressively
    outputs = model.generate(
        input_ids,
        max_length=2048,  # We trained our model with a max length of 2048
        eos_token_id= speech_end_id ,
        do_sample=True,
        top_p=1,           
        temperature=0.8,
    )
    # Extract the speech tokens
    generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]

    speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)   

    # Convert  token <|s_23456|> to int 23456 
    speech_tokens = extract_speech_ids(speech_tokens)

    speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)

    # Decode the speech tokens to speech waveform
    gen_wav = Codec_model.decode_code(speech_tokens) 

    # if only need the generated part
    # gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]

sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)

https://huggingface.co/HKUSTAudio/Llasa-3B
https://huggingface.co/HKUSTAudio/Llasa-1B
https://github.com/zhenye234/LLaSA_training

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值