通过Llama-Factory对Deepseek-r1:1.5b进行微调

由于近期项目需求,我们计划在机器狗上部署对话大模型,并结合具体业务场景进行定制化回答。在技术选型过程中,我们对比了RAG(Retrieval-Augmented Generation)和模型微调两种策略。RAG虽然在知识检索方面表现优异,但需要额外部署文本嵌入模型,增加了部署复杂性和资源开销。相比之下,模型微调能够直接针对特定场景优化模型性能,避免了冗余组件的引入,因此我们最终选择了微调策略。

在微调框架的选择上,我们采用了LLaMA-Factory。这是一款开源的低代码大模型微调框架,集成了当前业界广泛使用的微调技术,能够显著简化微调流程。其核心优势在于支持通过Web UI界面实现零代码微调,大幅降低了技术门槛,同时保留了高度的灵活性。通过该框架,我们能够快速将业务场景数据注入模型,实现高效的知识定制化,最终满足项目对对话大模型的实际需求。

1. 环境配置

默认anaconda、cuda都已经安装完毕!

conda create -n Llama-Factory python=3.10

python 推荐3.10

torch推荐2.4

torch在阿里云直接下载离线版的cuda版本安装,链接

微调Deepseek-r1:1.5b需要8G左右的显存

 

git llama factory项目

git clone https://github.com/hiyouga/LLaMA-Factory.git

cd LLaMA-Factory
pip install -e ".[torch,metrics]"

验证安装

llamafactory-cli version

2. 准备数据集

[
  {
    "instruction": "人类指令",
    "input": "人类输入",
    "output": "模型回答"
  }
]

这里的“input”可以省略

再把对应的数据的文件名放入dataset_info.json里

3. 开始训练

启动llamafactory

llamafactory-cli webui

运行以上命令会自动跳转一个gradio的界面,如果报错可以尝试升级gradio

pip install --upgrade gradio

加载模型

加载数据集

查看数据集

调整参数

设置权重保存路径

 开始训练

4. 测试模型

训练结束后,会绘制loss曲线

加载训练的权重,开始对话

测试完成,微调成功

最后如果模型有用的话可导出微调的模型

再通过ollma加载导出的模型,加载自己的模型的方法可参考这篇文章

Ubuntu部署deepseek(离线版)_ubuntu离线部署deepseek-优快云博客

补充说明

  • 用于微调的数据集很关键!!! 
  • 损失下降的慢可以尝试增加学习率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张飞飞飞飞飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值