POJ 1236——Network of Schools(强连通)

本文探讨了在计算机网络中,如何确定最小数量的学校作为软件分发源,以确保软件能够覆盖网络中的所有学校,并进一步研究了如何通过扩展接收者列表来优化网络连接性,使得任意学校的软件更新都能传播至整个网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

题意:给出n个点的有向图,问1.最少要多少个点才能遍历全部边,2.最少要加多少条边才能使其成为连通图。

思路:强连通缩点,出度个数就是需要的最少遍历图的点个数,max(入度,出度)为最少增加边数,可使成为连通图。

#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<stack>
using namespace std;
struct node
{
    int to,nextt;
}A[10010];
int tot,head[110],carry,indox;
int DFN[110],LOW[110],book[110],ans[110];
int in[110],out[110];
stack<int>q;
void add(int x,int y)
{
    ++tot;
    A[tot].to=y;
    A[tot].nextt=head[x];
    head[x]=tot;
}
int init()
{
    tot=carry=indox=0;
    memset(head,0,sizeof(head));
    memset(DFN,-1,sizeof(DFN));
    memset(LOW,-1,sizeof(LOW));
    memset(book,0,sizeof(book));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
}
int tarjan(int x)
{
    int tem;
    DFN[x]=LOW[x]=++carry;
    book[x]=1;
    q.push(x);
    for(int i=head[x];i!=0;i=A[i].nextt)
    {
        tem=A[i].to;
        if(DFN[tem]==-1)
        {
            tarjan(tem);
            LOW[x]=min(LOW[x],LOW[tem]);
        }
        else if(book[tem]==1)
        {
            LOW[x]=min(LOW[x],DFN[tem]);
        }
    }
    if(LOW[x]==DFN[x])
    {
        ++indox;
        do
        {
            tem=q.top();
            book[tem]=0;
            ans[tem]=indox;
            q.pop();
        }while(tem!=x);
    }
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        init();
        int x;
        for(int i=1;i<=n;i++)
        {
            while(~scanf("%d",&x)&&x)
            {
                add(i,x);
            }
        }
        for(int i=1;i<=n;i++)
        {
            if(DFN[i]==-1)
                tarjan(i);
        }
        if(indox==1)
        {
            printf("1\n0\n");
            continue;
        }
        int ans1=0,ans2=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=head[i];j!=0;j=A[j].nextt)
            {
                if(ans[i]!=ans[A[j].to])
                {
                    in[ans[A[j].to]]=1;
                    out[ans[i]]=1;
                }
            }
        }
        for(int i=1;i<=indox;i++)
        {
            if(in[i]==0)
                ans1++;
            if(out[i]==0)
                ans2++;
        }
        printf("%d\n%d\n",ans1,max(ans1,ans2));
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值