ZOJ - 3537 Cake (区间DP+凸包)

本文探讨了如何将一个多边形蛋糕切割成多个三角形部分的最小成本问题,通过判断是否为凸包并使用区间动态规划(DP)来寻找最优解。介绍了最优三角剖分的概念,并提供了详细的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.

The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.

NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.

Input

There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers, N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following N lines contains two integers, x and y (-10000 ≤ x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.

Output

If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.

Sample Input

3 3
0 0
1 1
0 2

Sample Output

0

思路:先判断是不是凸包,然后区间DP寻找最优解,DP为最优三角剖分。

最优三角剖分:https://www.cnblogs.com/Jason-Damon/p/3298172.html

#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<iostream>
#include<math.h>
using namespace std;
struct node
{
    int x,y;
} a[1005],save[1005];
int dp[1005][1005],cost[1005][1005];
int dis(node d1,node d2,node d3)
{
    return d1.x*d2.y+d2.x*d3.y+d3.x*d1.y-d1.x*d3.y-d2.x*d1.y-d3.x*d2.y;
}
int cmp(node a,node b)
{
    if(a.y==b.y)
        return a.x<b.x;
    return a.y<b.y;
}
int Graham(node *p,int n)
{
    sort(p,p + n,cmp);
    save[0] = p[0];
    save[1] = p[1];
    int top = 1;
    for (int i = 0; i < n; i++)
    {
        while (top && dis(save[top],p[i],save[top-1]) >= 0) top--;
        save[++top] = p[i];
    }
    int mid = top;
    for(int i = n - 2; i >= 0; i--)
    {
        while (top > mid && dis(save[top],p[i],save[top-1])>=0) top--;
        save[++top]=p[i];
    }
    return top;
}
int n,p;
int Count(node a,node b)
{
    return abs(a.x+b.x)*abs(a.y+b.y)%p;
}
int main()
{
    while(~scanf("%d%d",&n,&p))
    {
        for(int i=0; i<n; i++)
            scanf("%d%d",&a[i].x,&a[i].y);
        if(Graham(a,n)!=n)
        {
            printf("I can't cut.\n");
            continue;
        }
        memset(cost,0,sizeof(cost));
        memset(dp,0x3f,sizeof(dp));
        for(int i=0; i<n; i++)
            dp[i][(i+1)%n]=0;
        for(int i=0; i<n; i++)
        {
            for(int j=i+2; j<n; j++)
            {
                cost[i][j]=cost[j][i]=Count(save[i],save[j]);
            }
        }
        for(int len=2; len<n; len++)
        {
            for(int i=0; i<n; i++)
            {
                int j=i+len;
                if(j>=n)
                    continue;
                for(int k=i+1; k<j; k++)
                {
                    dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
                }
            }
        }
        printf("%d\n",dp[0][n-1]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值