UVA - 11464 Even Parity (枚举)

本文探讨了一种在N×N大小的网格中调整0到1的最小转换次数,以确保每个单元格的奇偶性为偶数的问题。输入包括多个测试用例,输出为所需的最小转换次数或无法实现时返回-1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

We have a grid of size N ×N. Each cell of the grid initially contains a zero(0) or a one(1). The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right). Suppose we have a grid of size 4×4: 1 0 1 0 The parity of each cell would be 1 3 1 2 1 1 1 1 2 3 2 1 0 1 0 0 2 1 2 1 0 0 0 0 0 1 0 0
For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.
Input
The first line of input is an integer T (T < 30) that indicates the number of test cases. Each case starts with a positive integer N (1 ≤ N ≤ 15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.
Output
For each case, output the case number followed by the minimum number of transformations required. If it’s impossible to achieve the desired result, then output ‘-1’ instead.
Sample Input
3

3

0 0 0

0 0 0

0 0 0

3

0 0 0

1 0 0

0 0 0

3

1 1 1

1 1 1

0 0 0
Sample Output
Case 1: 0

Case 2: 3

Case 3: -1

 

白书思路:枚举第一行,通过第一行就可以对应的知道其他的数值。

白书代码:

#include<algorithm>
#include<string.h>
#include<stdio.h>
#define inf 0x3f3f3f
using namespace std;
int t,n;
int A[20][20],B[20][20];
int check(int s)
{
    memset(B,0,sizeof(B));
    for(int i=0;i<n;i++)
    {
        if(s&(1<<i)) B[0][i]=1;//枚举所有情况
        else if(A[0][i]==1) return  inf;//1不能变成0
    }
    int sum;
    for(int i=0;i<n-1;i++)
    {
        for(int j=0;j<n;j++)
        {
            sum=0;//计算上左右的和
            if(i>0) sum+=B[i-1][j];
            if(j>0) sum+=B[i][j-1];
            if(j<n-1) sum+=B[i][j+1];
            B[i+1][j]=sum%2;
            if(A[i+1][j]==1&&B[i+1][j]==0) return inf;
        }
    }
    int ans=0;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            if(B[i][j]!=A[i][j]) ans++;
        }
    }
    return ans;
}
int main()
{
    scanf("%d",&t);
    for(int ph=1;ph<=t;ph++)
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
                scanf("%d",&A[i][j]);
        }
        int ans=inf;
        for(int i=0;i<(1<<n);i++)
        {
            ans=min(ans,check(i));
        }
        printf("Case %d: ",ph);
        if(ans>225)//15x15=255
            printf("-1\n");
        else
            printf("%d\n",ans);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值