题目描述
For this problem, you will write a program that reads in a sequence of 32-bit signed integers. After each odd-indexed value is read, output the median (middle value) of the elements received so far.
输入
The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by an odd decimal integer M, (1 ≤ M ≤ 9999), giving the total number of signed integers to be processed.
The remaining line(s) in the dataset consists of the values, 10 per line, separated by a single space.
The last line in the dataset may contain less than 10 values.
输出
For each data set the first line of output contains the data set number, a single space and the number of medians output (which should be one-half the number of input values plus one). The output medians will be on the following lines, 10 per line separated by a single space. The last line may have less than 10 elements, but at least 1 element. There should be no blank lines in the output.
样例输入
3 1 9 1 2 3 4 5 6 7 8 9 2 9 9 8 7 6 5 4 3 2 1 3 23 23 41 13 22 -3 24 -31 -11 -8 -7 3 5 103 211 -311 -45 -67 -73 -81 -99 -33 24 56
样例输出
1 5 1 2 3 4 5 2 5 9 8 7 6 5 3 12 23 23 22 22 13 3 5 5 3 -3 -7 -3
动态查询中位数
建立两个堆,一个升序,一个降序,确保降序堆内元素大于升序堆内,升序堆元素数比降序堆多一或相等。奇数次时弹出升序堆堆顶元素就是中位数。
#include <iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
priority_queue<int,vector<int>,greater<int> >q1;
priority_queue<int,vector<int>,less<int> >q2;
vector<int>g;
void add(int x)
{
if(q1.empty())
{
q1.push(x);
return;
}
if(x>q1.top())
{
q1.push(x);
}
else
{
q2.push(x);
}
while(q1.size()<q2.size())
{
q1.push(q2.top());
q2.pop();
}
while(q1.size()>q2.size()+1)
{
q2.push(q1.top());
q1.pop();
}
}
int main()
{
//freopen("in.txt","r",stdin);
int t,cnt,n,x;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&cnt,&n);
while(!q1.empty())
{
q1.pop();
}
while(!q2.empty())
{
q2.pop();
}
g.clear();
for(int i=1; i<=n; i++)
{
scanf("%d",&x);
add(x);
if(i%2!=0)
{
g.push_back(q1.top());
}
}
printf("%d %d\n",cnt,(n+1)/2);
int len=g.size();
for(int i=0; i<len; i++)
{
if(i&&i%10==0)
{
printf("\n");
}
if(i%10)
{
printf(" ");
}
printf("%d",g[i]);
}
printf("\n");
}
return 0;
}