【python】numpy实现PCA降维

本文介绍了一种基于主成分分析(PCA)的降维算法实现,通过读取数据集并处理缺失值,计算协方差矩阵及特征值、特征向量,最终实现数据降维,并展示了前20个特征的方差贡献率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np

class PCA:
    def __init__(self, fileName, splitBy=' '):
        self.readData = np.array([line.split(splitBy) for line in open(fileName).readlines()], dtype='float')   # 读取数据为numpy矩阵
        nan_index = np.where(np.isnan(self.readData))   # 获取Nan值的坐标
        self.readData[nan_index] = np.take(np.nanmean(self.readData, axis=0), nan_index[1])     # 将Nan值替换为列均值
        self.initData = self.readData - self.readData.mean(axis=0)  # 得到去均值的数据矩阵
        self.Cov = np.cov(self.initData.T)  # 计算其协方差矩阵
        self.EValue, self.EVector = np.linalg.eig(self.Cov)   # 计算其特征值和特征向量

    def RecudeDimension(self, dim):     # 计算降维后的数据,前dim总方差贡献率,前dim各方差贡献率
        return np.dot(self.initData, self.EVector[:, :dim]), \
               [self.EValue[i]/sum(self.EValue) for i in range(dim)], \
               sum(self.EValue[:dim])/sum(self.EValue)

if __name__ == '__main__':
    pca = PCA('./PCA/secom.data')
    data, vals, vals_sum = pca.RecudeDimension(20)
    print('降维后的数据:', data)
    print('前20个特征的方差贡献率:', vals)
    print('前20个特征的总方差贡献率:', vals_sum)

数据集链接:(https://pan.baidu.com/s/1BB3TRVvK-BALs_Uwe0ejIw
提取码:tdlp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值