Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It's clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?
Input
The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.
Output
For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.
Sample Input
1
2 3
1 2 3
2 2 3
Sample Output
3 3 4
1.将第一序列读入data1向量中,并按升序排序。
2.将数据读入data2向量中,并按升序排序。
将data2[0] + data1[i] ( 0<=i<=n-1)读入dataq向量中
用make_heap对dataq建堆。
然后data2[1] + data1[i] (0<=i<=n-1),如果data2[1] + data1[i]比堆dataq的顶点大,则退出,否则删除
堆的顶点,插入data2[1] + data1[i]。然后是data2[2],...data2[n - 1]
3.将dataq的数据拷贝到data1中,并对data1按升序排序
4.循环2,3步,直到所有数据读入完毕。
5.打印data1中的数据即为结果。
ac:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<queue>
#define MAX 2005
using namespace std;
int sum[MAX],data[MAX],heap[MAX];
int main()
{
std::ios::sync_with_stdio(false);
int i,j,k,t,m,n,temp;
cin>>t;
while(t--)
{
memset(sum,0,sizeof(sum));
cin>>m>>n;
for(int i=0;i<n;i++)
cin>>sum[i];
for(int i=1;i<m;i++)
{
memset(data,0,sizeof(data));
sort(sum,sum+n);
for(int j=0;j<n;j++)
cin>>data[j];
sort(data,data+n);
for(int j=0;j<n;j++)
heap[j]=sum[0]+data[j];
make_heap(heap,heap+n);
for(int j=1;j<n;j++)
{
for(int k=0;k<n;k++)
{
temp=sum[j]+data[k];
if(temp>=heap[0])
break;
pop_heap(heap,heap+n);
heap[n-1]=temp;
push_heap(heap,heap+n);
}
}
for(int j=0;j<n;j++)
sum[j]=heap[j];
}
sort(sum,sum+n);
for(int j=0;j<n-1;j++)
cout<<sum[j]<<" ";
cout<<sum[n-1]<<endl;
}
return 0;
}